AFOSR-TR-95
REPORT DOCUMENTATION PAGE O L, C

public reporting turden tor this collaction of information is estimated o average 1 hour per response, mclfuding .

gathering and maintaining the data needed, and completing and reviewing the collection ot information. Send <o

collection of information, including suggestions for reducing this burden. to Washingtan Headquarters Services, D

Davis Highway, Suite 1204_ Arlington, VA 22202-4302. and 1o the Office of Management and Budget, Paperwaork Reauction Project (U/U4-U168), wasnington, DL JUSUS.

. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3_ REPORT TYPE_AND DATES COVERED
FINAL/15 JUL 91 TO 14 FEB 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

FAST MULTIPOLE METHODS FOR SCATTERING COMPUTATION

6. AUTHOR(S)

L. R. HAMILTON, J. J. OTTUSCH, R. S. ROSS, M. A. STALZER, 7894/08
R. S. TURLEY,J. L. VISHER)S. M. WANDURA F49620-91-C-0064

7 PERFORMING ORGANIZATION NAME(S] AND ADDRESS(ES) 8. PERFORMING ORGANIZATIGN
HUGHES RESEARCH LABORATORIES REPORT NUMBER

3011 MALIBU CANYON ROAD
MALIBU, CALIFORNIA 90265

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

F49620-91-C-0064

9. SPONSORING / MONITORING AGENCY NAME(S) Ag)q{gﬂ,waﬁg?ﬁ%‘
AFOSR/NM ﬁ”* 5y

110 DUNCAN AVE, SUTE B115 ¥
BOLLING AFB DC 20332-0001

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

13. ABSTRACT (Maximum 200 words)

At the outset of this contract, the focus of attention was the fast multipole
method (FMM) for the Maxwell equations. The FMM essentially provides for a fast
and accurate computation of "non-near” (in a sense made precise in [CRW93a]) fields
of specified currents. The techniques [Rok90, Rok93, CRW93a] of FMM's were
pioneered at Yale University by Professor Vladimir Rokh1in. During our contract
work, it became clear that the problem of efficient and accurate computation of
near field effects was as challenging and needy of study as the FMM. By the time

the contract was completed, we had wade significant and fundamental progress on
both fronts.

19951018 013

14. SUBJECT TERMS ‘ 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REP?RT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSTFIED SAR(SAME AS REPORT)
NSN 7540-01-280-5500 ‘ Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 739-18

Q.10

HAC REF J3480

FAST MULTIPOLE METHODS FOR
SCATTERING COMPUTATION

Hughes Research Laboratories
3011 Malibu Canyon Road

Malibu, California 90265

R. Hamilton
J. Ottusch

L.

J.

R.

M. A Stalzer
R.S. Turley
J.

S.

M Wandzura

September 1995

Final Report
Contract No. F49620-91-C-0064

July 15, 1991 Through February 14, 1995

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
110 Duncan Avenue, Suite B115
Bolling Air Force Base, DC 20332-0001

Sponsored by

Advanced Research Projects Agency

ARPA Order No. 7894

Monitored by AFOSR Under Contract No. F49620-91-C-0064

The views and conclusions in this document are those of the authors and should

not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of the Advanced Research Projects

Agency or the U.S. Government.

Accesion For

NTIS CRraal

DTIC TaB
Unannounced 0
Justification

By
Distribution | T
Availability Codes
. Avail and
Dist Speciai/ o
Contents }
1 Summary 3
1.1 Introduction 3
1.2 Results. 4
1.2.1 Discretization)
1.2.2 Fast Multipole Theory 6
1.2.3 FastScat Code Development 6
1.24 FastScat Results 6
2 Discretization 7
2.1 Introduction 7
22 BasisFunctions 8
2.2.1 Basis Functions with Enforced Continuity 8
2.2.2 Basis Functions without Enforced Continuity 9
23 Quadratures 10
2.3.1 Tools for Derivation of Quadrature Rules 11
2.3.2 Singular Functions on Intervals 12
2.3.3 Regular Functions on Multidimensional Domains 13
2.4 High-Order Regulation of Singular Kernels 13
2.4.1 Local Correction of Quadratures by Regulation of Kernels 13
2.4.2 Regulated Kernels for Laplace Equation 13
2.4.3 Regulated Kernels for the 3d Wave Equation 16
2.4.4 Use of Regulated Kernels 16
3 The Fast Multipole Method for the Wave Equation 18
3.1 Imtroduction. 18
3.2 Classic (O (N%?)) single-stage FMM 19
3.3 Faster (O (N*/3)) single-stage FMM 19
3.4 FMM for periodic structures 20
3.5 FMM with overlapping basis-function domains 20
3.6 Multilevel FMM 20
3.7 Parallel FMM Implementation 20

4 Implementation 21
4.1 Introduction 21
4.2 Logical Structure P 21
4.3 Programming Efficiency 22
4.4 Runtime Efficiency 23
4.5 Features and Abilities 24

5 Results 25
5.1 Validation 25

5.1.1 Imtroduction, . 25

512 Accuracy 26

9.1.3 High order quadratures 32

5.1.4 High order basis functions 37

5.1.5 Exactsurfaces 47

5.1.6 Fast Multipole Method 47

5.2 Benchmarks 48
A Reprints 52

Second International Conference and Workshop on Approxi-
mations & Numerical Methods for the Solution of the Maxwell

Equations 53

C Continuous Basis Functions : 54

D Scalable Quadratures 55
2

Chaptér 1

Summary

1.1 Introduction

Conventional methods for computing radar cross section (RCS) are limited by
computer processing time and memory requirements. These constraints limit
the practical scale size for accurate predictive codes to about 10 wavelengths, far
below the actual size of interest for most military platforms. We have demon-
strated fast, high-order computational techniques that dramatically reduce the
computation time and memory for large scale RCS calculations. When im-
plemented on large computers, this will enable accurate RCS prediction for
problems that are currently intractable. This development will clearly be of
tremendous advantage for design of future low observable platforms, where pre-
viously one could only rely upon expensive experimental measurements.

At the outset of this contract, the focus of attention was the fast multipole
method (FMM) for the Maxwell equations. The FMM essentially provides for
a fast and accurate computation of “non-near” (in a sense made precise in
[CRW93a)) fields of specified currents. The techniques[Rok90, Rok93, CRW93a]
of FMM’s were pioneered at Yale University by Professor Vladimir Rokhlin.
During our contract work, it became clear that the problem of efficient and
accurate computation of near field effects was as challenging and needy of study
as the FMM. By the time the contract was completed, we had made significant
and fundamental progress on both fronts.

The work carried out under this contract has been done in concert with work
done under a parallel contract (F49620-91-C-0084) to the Fast Mathematical Al-
gorithms and Hardware Corporation (FMAHC), which supports mathematical
research by Professors Rokhlin and Ronald Coifman on FMM and wavelet tech-
niques for scattering calculations. Hughes has an ongoing IR&D program in
areas which are closely related to the work we are pursuing under this contract.
The IR&D results significantly enhance the value of the items delivered under

this contract and are made available to the Government under limited rights.

Having worked out (under the guidance of FMAHC) the theoretical details
of the 3d FMM in the first year, we went on to implement the FMM for 2d and
3d scalar and electromagnetic scattering. Efficient implementation for the 3d
Neumann and electromagnetic cases required some additional technical details.
We made valuable progress on the theory of numerical integration necessary for
high-order discretization of boundary integral equations and for the 3d FMM.
We found high order Gaussian-type quadrature rules for integrals over triangles
and spheres. We also found Gaussian quadrature formulas for integration over
an interval of linear combinations of regular functions and functions with loga-
rithmic singularities at one or both endpoints. Such rules are useful for efficient,
accurate numerical solution of boundary integral equations that have singular
kernels, such as that for the wave equation. Near the end of the contract, we de-
vised and implemented an entirely new approach to high-order discretization of
field (both differential and integral) equations: the high-order regulation of sin-
gular kernels. This technique can be employed with either Galerkin or Nystrom
discretizations. Under our IR&D project, the design and implementation of our
object-oriented scattering code, FastScat* has been a success. Although it took
six months of coding to compute scattering from the simplest surface (polygons
in 2d with pulse basis functions), the speed with which we have been able to
implement curvilinear surface modeling, higher-order basis functions, new it-
erative solvers, the FMM, and the extension to 3d electromagnetic scattering
validates our implementation approach. In the following, we discuss both our
internal and Government sponsored research.

1.2 Results

We report our progress in four areas:

o High-order techniques for method of moments (MoM) discretization of
integral equations;

¢ Various techniques for FMM implementation;

e The design and implementation of FastScat, Hughes’ object-oriented scat-
tering code;

e FastScat testing and validation.
The first two were supported by this contract. Most of the FastScat development

was supported by Hughes IR&D, with the exception of the 2d curvilinear patch
work and 3d FMM implementation, which was funded under the contract.

*FastScat is a trademark of Hughes Aircraft Company.

. N O Ep &N N

1.2.1 Discretization

A principal and solitary achievement during this contract was the design and
construction of a high-order discretization for three dimensional surface scatter-
ing problems. The challenge of this was grossly underestimated at the start of
the contract. We tried (and abandoned) several approaches as documented in
our annual reports. Even the discarded techniques had some valuable byprod-
ucts, most notably the generalization of Gaussian quadratures to combinations
of singular and nonsingular functions. The approach finally adopted seems
clearly the simplest and most efficient. Our discretization approach is pre-
sented in terms of the Galerkin technique; however, most of the issues that must
be addressed and their appropriate resolution apply to Nystrom discretization
schemes as well.

Basis Functions

The integral equations pertaining to Interesting scattering problems typically
involve differential as well as integral operators. Because of this, conventional
Galerkin discretizations often employ basis functions that have some automat-
ically enforced degree of continuity. Construction of appropriately continuous
basis sets is in fact a major component of the finite element enterprise. We
expended considerable effort constructing such bases of arbitrary order. In the
end, we changed to a technique that obviates the whole exercise and lets one
construct well conditioned bases very easily.

Quadratures

We made fundamental progress in numerical integration, developing new quadra-

ture rules for singular functions on intervals and nonsingular functions on tri-
angles and spheres.

Kernel Regulation

Near the end of the contract, we constructed a radical approach to high-order
discretization of integral equation: the substitution of a carefully chosen regular
kernel for normal singular kernel. The key features of the modified kernel are
that it differs from the true kernel only locally and that it gives results identical
to the true kernel for convolutions with a suitable set of functions. The effort
was motivated in part as a way to incorporate the local corrections needed for a
high- order Nystrém method directly into the kernel. It turns out that this is not
possible for general geometries without excessive sampling, but the new method

can be used to subsume the geometrical information in the precomputation
stage.

1.2.2 Fast Multipole Theory

Understanding of the FMM for the Helmholtz equation has grown rapidly dur-
ing the course of the contract, first from the FMAHC-Hughes collaboration,
followed by significant work at Boeing and the University of Illinois. Besides
the generalization of Rokhlin’s original 2d method to higher dimensions, the
most important developments have been the further compression of the trans-
lation operator and detailed understanding of the higher dimensional versions

of the multilevel FMM.

1.2.3 FastScat Code Development

We developed the FastScat program for accurately computing scattering and
radiation from 2d or 3d surfaces of arbitrary shape and user-specified boundary
conditions. The program allows the accurate specification of the surface model
through the use of a variety of flat and curved patches, and supports the use of
higher order basis functions. The linear operator of the integral equation can
be represented in various ways, such as conventional dense of FMM. (In the
future special representations for symmetrical bodies will be accommodated.)
The method of solution can be specified as direct, or one of a number of iterative
techniques, for example the biconjugate gradient method.

FastScat was developed using an object-oriented methodology, and was writ-
ten primarily in C++. This methodology makes implementation modifications
involving data representation much less costly than is the case with a conven-
tional procedural approach. FastScat is the only program of its kind — com-
bining high order methods, curved surface models, and the FMM. It was one
of the first large numerics programs written in C++, and remains a pioneer in
this area.

1.2.4 TFastScat Results

We verified that FastScat computes accurate answers by comparing its results to
series solutions, measured data, and other programs. We also verified that the
program exhibits the high-order convergence expected of the algorithms used.
As a result of this high-order convergence, we are able to get accurate estimates
of our computational accuracy, without expending excessive resources.

We have compared the solution times and memory requirements of FastScat
with the EMCC benchmark programs RAM2D and CARLOS-3D. For 2d prob-
lems larger than a wavelength, and requiring at least one significant digit of ac-
curacy, FastScat is faster than RAM2D and uses less memory. For 3d problems,
FastScat has faster solution times and uses less memory than CARLOS-3D. For
most problems, when demanding only a few digits of precision, CARLOS-3D is
still faster at computing matrix elements since this portion of the FastScat code
has not yet been optimized.

: - e E.

Chapter 2

Discretization

2.1 Introduction

Discretization refers to the process of approximating a problem concerning func-
tions (physically, fields or sources) having an infinite number of unknowns by a
problem with a finite number of unknowns. This process is obviously essential to
the numerical solution of field problems. It is a fundamental tenet of Professor
Rokhlin’s approach to computational physics that discretizations must be high
order. High order means that the error in a computation decreases rapidly (like
a high power or, better yet, exponentially) as the number of parameters used to
describe a function increases. The value of high-order discretizations is that they
allow economical error control and estimation[Ott94, HOS*95a, HOS*95b).

When this contract began, there were (to our knowledge), no high-order
codes for solution of 3d electromagnetic integral equations. Codes other than
FastScat (for example, Patch[JWS88], CARLOS[PMMG92], and FERM[LSL87))
compute convolutions with the singular kernel (Green function) in an inherently
low-order fashion[Wan95b, Wan95a). Essentially, they subtract from the kernel
a piece that renders the remainder finite but still singular. The subtracted part
Is integrated analytically; the problem is that Gaussian quadrature is used to
approximate the still singular remainder. These codes usually have other fea-
tures that restrict them to low-order computation, such as crude surface models
and low-order basis functions.

In the course of this contract work, we developed and implemented two ap-
proaches to high-order discretization of integral equations with singular kernels.
Both approaches were implemented and are discussed here in the context of a
Galerkin (method of moments) approach to discretization; the elements of each
also apply to a Nystrém method. The first approach uses quadratures that are
specially constructed to give high-order results for the particular singularity in-
volved. The second substitutes a nonsingular (regulated) kernel for the singular

kernel. The regulation procedure is dictated by the requirements of locality
of correction and preservation of convolutions with a suitable class of smooth
functions.

2.2 Basis Functions

Constructing a high order discretization of a surface scattering problem in three
dimensions is fundamentally more difficult than in two. In two dimensions
(for simply connected surfaces), one may adopt a single regular parameteriza-
tion. A common choice which works well is to parameterize by arc length along
the perimeter. In three dimensions, a single regular parameterization is not
generally available (consider maps of the earth’s surface). One must therefore
introduce a set of parameterizations that cover the surface. We will refer to an
area sharing a common parameterization as a “patch”. Then, when one con-
structs a discretization, either Galerkin or Nystrom, some basis functions must
be used on each patch. This is manifest in the case of the Galerkin method, in
the case of Nystrom, the basis functions are needed to do the precomputation
of “local corrections” to the quadrature rules[Str94]. [The local corrections are
necessitated by the short distance singularity of the integral equation kernel.]

In our work, we have used simple basis functions consistent with high-order
solution convergence. These are polynomialsin the patch parameters combined
with suitable functions of derivatives of the patch map x(u). The derivatives are
used to achieve good conditioning, as well as provide tangential basis functions
for vector problems.

2.2.1 Basis Functions with Enforced Continuity

During most of the contract, we used a formulation where tangential surface
derivatives acted on the basis functions. (The alternative is for the derivatives
to act on the kernel, which exacerbates the singularity, making high-order in-
tegration more difficult.) In order to get finite matrix elements, this requires
some degree of continuity to be enforced. In the case of scalar scattering with
Neumann boundary conditions (BCs), the functions must be continuous. In two
dimensions, for example, this is accomplished by using “rooftop” basis functions
supported on adjacent patches in combination with quadratic and higher-order
polynomials that vanish at the endpoints of single patches. In the case of elec-
tromagnetic scattering it means functions with finite divergence. A method
to achieve finite divergence on curvilinear patches was described in [Wan92).
A systematic generalization of this method to arbitrary order is described in
[HMS*94a]. Details of the implementation for the Neumann and vector prob-
lems are given in Appendix C.

- N -

2.2.2 Basis Functions without Enforced Continuity

Near the completion of the contract, we adopted a radically different approach
to high-order discretization: the method of high-order regulated kernels (see
Section 2.4 following). As this method replaces the singular kernel with a reg-
ular one, it is then possible to use a formulation where the tangential surface
derivatives operate on the kernel instead of the basis functions. This greatly sim-
plifies the choice of basis functions and the implementation of the matrix fill.
For example, it is then easy to construct orthonormal basis functions. Details
of the functions we use in FastScat are given in Appendix C; in this section we
simply exhibit the basis functions and the recursion relations used to compute
them. (Some implementation efficiency is gained by using the same quadrature
rule for all matrix elements between a given patch pair; the values for all basis
functions at each abscissa can be generated by the recursion relation.)

2d

Each patch is parameterized by a function x(u), where 0 < u < 1. The Jacobian
of the map is

dx
9(u) = |1 (2.1)
Orthonormal (with respect to dz) basis functions are thus given by
V2m+1 ‘
fm(u) = %Pm(zu -1, (2.2)

where P, is a Legendre polynomial and the patch index is suppressed. The set

of Legendre polynomials is computed for each argument by using the upward
recursion

Poii(2) = i [(2n+1)zP,(2) — nP,_1(2)] , (2.3)
with
Po(z) = 1 4
PI(Z) = z 5)
3d

Scalar Case FastScat uses curvilinear triangular patches, parameterized by
uy, uz, where 0 < u; 5 and u; + uy < 1. Orthogonal polynomials over triangles
are more easily expressed in terms of the variables

£= % (2 = 3u; — 3uy) (2.6)
n= _\é_ﬁ (u1—ug) . (2.7)
9

[These are called z and y in Appendix C; the Greek symbols are used here to
avoid confusion with the components of the map x(u;, uz).] The orthonormal
basis functions are

fnm(&vﬂ) = (2/3)m (n + 1)(2m+ I)an (46 3 1) (1 - E)um (@_) ’

g'/ 3 1-¢
(2.8)

where

Ram(¢) = PIIENY(Q), (2.9)

and P®P(() is a Jacobi polynomial[AS72). [Because of the (1 — €)™ the fum
are indeed polynomialsin £, 7 or 1, u; in spite of the argument of the Legendre
polynomial.] Presently, FastScat computes the the R polynomials using

Ran(¢) =1, (2.10)
and the recursion

(r+m +2)(20 4 (1 = O Ry (€) = 8(m +1)(n +m + DR m(€)

Rnm(¢) = 2(n —m)[(2n + 1)¢ — (2n + 4m + 5)]

(2.11)
This is marginally stable, but adequate for moderate (n < ~ 12) order. For
higher order, a more stable computation could be achieved by using the three
term recursion

Ruo(C) = [1+(2n—1)(2n+ 1){] Ra_1,0(¢) = (n — 1)(2n + 1) Ra_2,0(C)
OB = (n+1)(2n—1) ’
(2.12)
with Ry 0(¢) = (1+3()/2 to compute the the R, ¢(¢), and a three term recursion
for Ry m-1, Ram, Rn,m+1 to generate a tridiagonal system for all R, for each
n. The other BC for this system is supplied by Eq. (2.10).

Vector Case The current FastScat implementation simply uses the the scalar
basis functions of the previous section multiplied by the unit tangent vectors

dX/d’LL1
ldx/du,|
h=nxi, (2.14)

)

(2.13)

where 7 is the unit surface normal. These obviously form an orthonormal basis.

2.3 Quadratures

A high-order discretization of an integral equation is fundamentally based on
numerical quadrature. A large fraction of the contract effort was expended

10

, \

in search of efficient and accurate quadrature techniques applicable to the 3d
scattering problem. As was the case with respect to the basis functions (see
Section 2.2 preceding) the change to the high-order regulated kernel obviated
much of the effort spent earlier. In particular, much effort was spent on finding
special quadrature rules for integration on real intervals of functions with loga-
rithmic singularities at one or both endpoints, and on variable transformations
that allowed these rules to the computation of 3d matrix elements. The latter
exercise seems to be of ephemeral interest and was documented in [HST+93c].

All quadrature rules found under this contract are tabulated in Appendix D,
along with Mathematica code that demonstrates their use. This voluminous
appendix will not be furnished with all copies of this report, copies (printed or
electronic) are available on request.

2.3.1 Tools for Derivation of Quadrature Rules

A quadrature rule is a prescription for approximation to an integral by a weighted
sum of function values:

N
Ifl = /dz f(2) &) waf(zn). (2.15)

The weights w, and abscissae z,, obey the condition that a set of M functions
fm(z) are integrated exactly:

N
In = 1Ilfm]=) wafm(za) ; m=1,...,M. (2.16)
n=1

These functions are chosen to so that the quality of an approximation to the
desired integrand by a linear combination of them increases rapidly with M.
The (nonlinear) equations satisfied by the weights and abscissae are very poorly
conditioned. (This is the converse of the fact that the computation of the
integral by the quadrature rule is very well conditioned.) In this subsection, we
exhibit a couple of techniques that have proven useful for the computation of
quadrature rules for both singular and nonsingular functions.

Newton-Rokhlin Method

This is an iterative technique to refine a sufficiently good initial guess (g, Z)
for a quadrature rule. It results from the straightforward linearization of Eq. (2.16):

Ty X Iy + bz, (2.17)
Wy & Wy + dw, (218)
11

N

Im =Y tinfm(n) (2.19)
i)

= Y fm(@a)bwn + nfip(En)62a 5 m=1,...,M. (2.20)
n=1

For multidimensional quadrature, there can sometimes be fewer equations than
unknowns. In such a case, one can either use a pseudoinverse or enforce a
subsidiary condition, such as minimization of }_ w?. A more complicated
exposition of this iterative method (which has the advantage of providing for
various interesting proofs) can be found in [MRW93]. Because of the poor
condition of these equations, it is necessary to use extended precision arithmetic

for their solution in order to obtain ordinary precision in the results.

Simulated Annealing

In order to use the preceding iterative technique, one must start from a suf-
ficiently close initial guess. For fairly high-order rules, the domain of attrac-
tion of the iteration is usually uncomfortably small. To help find an initial
guess that is in this domain, we have employed the technique of simulated
annealing{KGV83, Kir84] on the objective function

2
J=) wnm [Im - anfm(xn):l , (2.21)

where the wy, are positive weights. The choice of these weights is an art which
can strongly influence the ease of finding rules.

2.3.2 Singular Functions on Intervals

For high-order computation of near* matrix elements of the Helmholtz kernel
on a curvilinear surface, it is convenient to be able to compute integrals of the
form

1
/D dz [b(z) Inz + 6(z)] (2.22)

(where % and ¢ are regular) without having to separate the two terms in the
integrand. In the course of this contract we found that quadrature rules that are
exact for polynomial ¢ and ¢ (of the same degree) with good behavior {positive
weights and abscissae in the integration interval) are available. An analysis of
the generalization of these to a wide class of singularities is given in [MRW93].
Rules for integrands of the above form and also with logarithmic singularities
at both endpoints are tabulated in Appendix D.

*Those which probe the singularity of kernel at vanishing separation

12

58 e

o : ‘A

— - _ _"

G o 2 B ODE B ok R B e B O B U B G U ER

2.3.3 Regular Functions on Multidimensional Domains

By using elementary group representation theory, one may reduce the number
of equations to be solved for the weights and abscissae for integration over
symmetric regions. This was detailed in the annual report{HST*93c]. We used
these methods to develop rules up to order 29 for triangles and up to order 48
for spheres. The triangle rules use the dihedral group D3 and the sphere rules
use the octahedral group O,. The triangle rules are used in FastScat because
we use triangular patches, the sphere rules are fundamental to the FMM. These
rules are also tabulated in Appendix D.

2.4 High-Order Regulation of Singular Kernels

2.4.1 Local Correction of Quadratures by Regulation of
Kernels

An alternative to using special quadratures to compute convolutions with singu-
lar kernels is the modification of the kernel itself to truly remove the singularity.
“Truly” means here to render the kernel and all its derivatives finite. Short-
distance regulation of kernels is a time-honored technique in physics; it was the
key to solving the problem of extracting predictions from higher-order compu-
tations in quantum electrodynamics[PV49, Fey49]. (The regulation methods
cited were, however, in present terminology, “low-order” — the resultant ker-
nels, although finite for vanishing separations, were still singular.)

The question of how to preserve accuracy control while regulating the kernel
is illuminated by the observation that achieving high-order convergence by use of
special quadratures, constructed to converge rapidly when integrating something
with the singularity structure of the kernel, still requires that the functions that
are convolved with the kernel be regular. (If one were to introduce singular
basis functions, for example, to model sources near geometric singularities of
the scatterer, this approach would need to be modified to take into account
the singular behavior of the basis functions.) Thus the key is to require that
the regulated kernel not only converge to the singular kernel as the regulation is
removed, but that it gives identical results to the singular kernel when convolved
with a suitable class of smooth functions.

2.4.2 Regulated Kernels for Laplace Equation
2d

We will show how this can be done to the kernel
G(ry=Inr, (2.23)

13

for the Laplace Equation in two dimensions for convolution with functions on
smooth curves (smooth surfaces of 2d objects).

The first step is to Fourier transform to momentum space, giving (Ing++ —
1)/¢%, where v is the Euler constant. We then regulate the short-distance (large
q) with a factor exp —¢?/(4c). Fourier transforming back to real space gives the
regulation prescription

Inr —Inr+ -;—El(arz) , (2.24)

where FE; is the exponential integral[AS72]. This regulated kernel obviously
is nonsingular (because Ej(z) + Inz is regular), approaches the unregulated
kernel (for fixed r) as @ — 00, and has only local corrections. The last property
means that the difference between the kernels vanishes as fast as a Gaussian
for r > a = 1/ \/a, Because of this, we need not concern ourselves with kernel
modification for sufficiently far interactions, allowing compatibility with the
FMM.

The regulation so far is low order, in the sense that results computed with
the regulated kernel will have regulation errors that are proportional to a low
power of a. What we want to do, then, is to add a smooth local function that
renders the regulation high order. A fairly obvious choice is thus

Gp(r) = Inr+ %El(arz) - e""'QFB(ar2) (2.25)
~ 1
Gp(0) = -3 (y+Ina) - Fg(0), (2.26)
and Fp is a Bth order polynomial
B
Fp(z)= Y P, (2.27)
I=0
with coefficients adjusted to enforce
/ drr*™ [Gp(r) = G(r)] =0 ; m=0,...,B (2.28)
0
using
1 L2m o 1 I'(m+1/2)
2/ Ei(ar®) = 5t om 1 (2.29)
1 1
2m+21 —ar®
Thus
2m [A - 1 F(m + 1/2)
/ drr G (7')] - 2am+1/2 2%n +1
B
S T+ 14+ 1/2)£P) (2.31)
2am+1/2 1 A
=0
14

-._-_--_--a-_..__‘-l

so that 5
(B) _ I'(m+1/2)
I;r(m+ L1/ = === (2.32)
3d
The regulation of the 3d Laplace kernel proceeds similarly, the kernel
1
G(r) = - (2.33)
having the Fourier transform 1/¢%. Then
_ f 2
Gp(r) = M-& Vae " Fg(ar?) (2.34)
- 2
Gp(0) = Va (ﬁ + FB(O)) (2.35)
B
Fp(z) =Y fPs. (2.36)
=0
We determine fl(B) by enforcing
/ drr?™t! [Gp(r) = G(r)] =0 ; m=0,...,B (2.37)
0
using
 am _ 1 (2m)!
/0 drr®erfc (var) = T 3 @m 1)1 (2.38)
Oo m —ar? (m + 1)'
QIA drp2m+2itl, = oom (2.39)
Then
1 (2m)!
d 2m+1 G -
/ rr [(T)} C!m+1/2 2"‘\/7_r(2m+1)”
B
1
(B)
+W g(m-}- DA77 (2.40)
so that
-) = (2m)!
(m+ P = — (2.41)
; 2m-1/m(2m + 1)!

15

2.4.3 Regulated Kernels for the 3d Wave Equation

One could apply the analogous procedure to the kernel for the wave equation:

G(r) = <, (2.42)

however the required moments are not as easy to compute, and would depend on
the additional dimensionless parameter ka. A simple and successful alternative
1s to use the regulated kernel for the Laplace equation [here denoted as §(r)] as
follows: sin(kr)
— isin(kr
G(r) = §(r) cos(kr) + isin(kr) . (2.43)
(One must note that the imaginary part of G is already regular and should not

be altered.) This (and its analog in 2d) is what is implemented in FastScat.

2.4.4 Use of Regulated Kernels

The basic choices are

ro the distance beyond which the bare kernel is used,
a = 1/a? the high frequency cutoff parameter, and
B the order of the correcting polynomial.

These will depend (at least) on the size and shape of the patches, the maximum
basis function order, and the digits of precision required p. The size and shape
of a patch will be parameterized by I, a “minimum” length. A “maximum”
length L will govern the choice of quadrature order. For a 2d patch, these are
locally,

() = L{u) = v/o{a), (2.44)

where one might evaluate at several points on the surface and choose the smallest
[and largest L. For 3d,

L{u) = lg"a\/gn-i-gzz".(hz (2.45)
l(u) = L\(/g). (2.46)

The proportionality constants are determined by requiring that for an equilat-
eral triangle, L = side length and [= altitude. It is a good guess that setting
B equal to the basis function order is nearly optimal.

We choose ry and « by setting

Ga(rg) — G(rp)

60 ~ 1077 (2.47)

16

A good fit for 2dis 1< p<16and 0< B< 121is

ar? = 0.0508181 B +3.26799p. -(2.48)

A good fit for 3dis 1 <p<16and 0 < B < 12is

ar? = 3.1729p . (2.49)

One should not use p < 1. All more complicated fits tried lead to incorrect
behavior.

17

Chapter 3

The Fast Multipole
Method for the Wave
Equation

3.1 Introduction

At the beginning of this contract, no one really knew how to construct a fast
multipole algorithm in more than two dimensions. Qur proposal said:

Construct a 3d version ‘of the algorithm. Conceptually, this is a
relatively straightforward procedure. However, it presents a number
of technical difficulties, associated with the cumbersome nature of
the 3d partial wave expansions and related “addition theorems”.

Indeed, the principal analytical tools of Ref. [Rok90) are the par-
tial wave expansions and translation operators for the Helmholtz
equation in two dimensions. It turns out that the latter have an an-
alytically available diagonal form, and it is the ability to apply them
rapidly that results in a fast algorithm. Furthermore, in two dimen-
sions, the translation operators are convolutions, and are diagonal-
ized by the discrete Fourier transform (DFT). While not necessary
for the construction of a fast scheme, the latter fact significantly
simplifies the analytical apparatus needed. This advantage is not
available in three dimensions, where the DFT is replaced with the
decomposition of functions on a sphere into a series of harmonic
functions. The theory of such decompositions and their behavior
under translation operators is not as satisfactory as that in two di-
mensions, and some serious analytical work will be necessary.

18

As it turned out, the observation of Coifman and Rokhlin that the diagonal-
ization of the 2d addition theorem by a DFT was physically equivalent to the
use of a far-field representation immediately dispersed all “technical difficulties”
and made it obvious how to realize the FMM in any number of dimensions. Af-
ter the presentation[CRW93b, CRW93c, CRW93a] of this view, the FMM was

understood and implemented not only by us, but by other groups (Boeing and _

University of Illinois), with stunning speed. This may be the most important
result of this contract effort.

Beyond the extension to 3d, there have been many important developments
in FMM theory over the past four years. Because these have been well docu-
mented in the literature, we use this chapter to simply outline them and cite
the relevant publications.

3.2 Classic (O (N*?)) single-stage FMM

The original exposition of the Helmholtz FMM (in 2d) was given in [Rok90]. As
mentioned above, the hurdle to application in higher dimensions was the “cum-
bersome” way in which the general addition theorems were viewed. (Some ap-
preciation of this may be attained by reference to [Che90, Che92, WC93].) The
key step of translation operator diagonalization in 3d is explained in [Rok93].
A prescription accessible to pedestrians, with some physical interpretation, was
published in [CRW93a]. Detailed extrapolations of the theory were given by
Epton[ED95]. The mechanism of the Boeing implementation is described in
[DY94].

3.3 Faster (O (N*/3)) single-stage FMM

It came as somewhat of a surprise that the classic single-stage FMM can be
significantly improved. Again, a physical view elucidates the mathematical ap-
paratus; the action of a source group on a well separated field region should
depend only on the far-field of the source in the directions of the observation
points. This results in a further reduction in the density of the translation oper-
ator matrix representation. Our approach is outlined in [CRW94]. The method
was discovered independently by Wagner and Chew[WC94]. An extreme version
(where the interaction between a group pair is represented by a single far-field
direction) is the fast but crude “far-field” approximation[LC95]. At the end of
the contract, we recognized a deep simile between the translation operator of
the O (N4/3) FMM and the method of high-order regulated kernels discussed
in the preceding Section 2.4. In fact, the N*/3 translation operator in the large
separation limit is exactly a high-order regulated delta function.

19

3.4 FMM for periodic structures

For computation of the fields of a periodic structure, Fourier transform tech-
niques obviate the use of the FMM, as long as the unit cells are not large
compared to a wavelength[KTW93]. The difficulty is that a straightforward
precomputation of the matrix elements of the periodic kernel is extremely ex-
pensive because it involves the use of the Ewald summation method in the inte-
grations. By using the Ewald method on the FMM translation operator[RW94],
the precomputation can be vastly reduced.

3.5 FMM with overlapping basis-function do-
mains

A technical difficulty arises when employing overlapping basis functions to insure
continuity. This point was discussed in the annual report{HOS*95c]. When
basis functions with forced continuity are abandoned (see Section 2.2), this
ceases to be an issue.

3.6 Multilevel FMM

In spite of some claims to the contrary, Rokhlin’s original paper[Rok90] de-
scribed an implementation of a multilevel 2d FMM. The multilevel apparatus
was sketched in [CRW93a]. The major difference in 3d is that the interpolation
(and filtering) needed to aggregate source (and “disaggregate” field) groups
can not be made fast in a trivial way. Unfortunately, slow interpolation and
filtering spoils the complexity of the multilevel FMM. Our annual contract
report[HST*93c] provided an accurate interpolation prescription, but no fast
implementation prescription. This problem can again be solved by use of a
high-order regulated kernel, or by use of FFTs and a 1d FMM. The importance

of fast interpolation and filtering is discussed in [DY95]. Implementation results
are described in [SC95].

3.7 Parallel FMM Implementation

A prototype parallel implementation (of the single-stage “classic” FMM) is de-

scribed in [Sta95]. It exhibited good scalability for problems up to a substantial
size.

20

Chapter 4

Implementation

4.1 Introduction

A primary motivation behind FastScat development was to create a general
program capable of efficiently and accurately computing scattering and radiation
from surfaces of arbitrary shape and size. In this program, we have implemented
conventional solution techniques as well as new computational algorithms, such
as the FMM. In addition, FastScat has been used as a testbed to demonstrate
the effectiveness of various enhancements such as accurate surface models, high-
order basis functions, and accurate quadrature rules.

To support this work, FastScat had to be written in such a way as to be highly
modifiable and extensible, as well as reasonably efficient. FastScat was designed
using an object-oriented methodology[Mey88], and was written primarily in
C++. In the rest of this chapter we elaborate on some important aspects of
this approach to the implementation, and describe the unique features of the
resulting program.

4.2 Logical Structure

The first, and probably most important, step toward the successful implemen-
tation of FastScat was laying out the overall design of the program. Although
we would first consider scattering in 2d using conventional techniques, program
designers had to look forward to the later extension to 3d surfaces, and to the
addition of new methods of discretization and solution. The resulting FastScat
design is based on the key abstractions of the physics of scattering. By defining
classes such as Surface, Patch, BasisFunction, GalerkinDiscretization,
Z Matrix, FMM, and Current, we created a direct mapping of the theory and al-
gorithms onto the resulting computer code. This class organization along with
language features such as inheritance, data encapsulation, polymorphism, and

21

dynamic binding allowed the key elements of the problem to be expressed and
manipulated in a natural way.

A good overview of FastScat’s design can be found in [HST*93a], included
in Appendix A. The paper describes our implementation objectives and how
these led us to adopt C++ and an object-oriented design. It also introduces
an number of important FastScat classes, and discusses some of the costs and
benefits of our approach. A more up-to-date description of the implementation
of surfaces in FastScat can be found in [HST*94], also included in Appendix A.

4.3 Programming Efficiency

One of the major benefits of our use of an object-oriented approach, and of a
language with features that support this approach, has been realized in program-
ming efficiency. The most significant effects on programming efficiency were seen
with the addition of new features and algorithms to FastScat. Although it took
nearly six months of design and coding to first compute scalar scattering in
2d, the speed with which were able to implement curvilinear surface modeling,
higher-order basis functions, new iterative solvers, the FMM, and the extension
to 3d electromagnetic scattering has been impressive. Key to these successes,
we believe, is our object-oriented implementation in which classes containing
hidden data representations interact only through well-defined interfaces.

According to Brooks[Bro75], “Representation is the essence of program-
ming,” and thus true advances in the efficiency of a computation are usually
recognized through changes in the data representation. Unfortunately, using
traditional programming techniques, the data representation often becomes a
common thread throughout the entire program, and thus changes to this rep-
resentation result in many and far-reaching code modifications. In contrast,
such changes are not expensive in a well designed C++ program. Consider, for
example, the FMM, whose sparse components require a fundamentally different
data representation than do traditional dense techniques. Having implemented
the dense solution methods in terms of a general class SurfaceOperator, the
addition of the FMM in 2d required only the creation of a new class, derived
from SurfaceOperator, which would maintain the new sparse representation.
Likewise, although initially no one was sure how to apply the FMM in 3d,
when an algorithm was finally defined implementation in FastScat was quick
and simple. Even unanticipated changes, like moving to the regulated kernel
and patch-based basis functions, were readily implemented within the FastScat
framework. Such a basic change in approach would likely have been a disaster
1n a more traditional code.

99

4.4 Runtime Efficiency

At the beginning of this contract, there was debate over what language would be
used for FastScat implementation. FORTRAN seemed a natural choice because
it was widely known in the scientific community, and because highly optimized
FORTRAN compilers were available on almost every platform. The disadvan-
tages of FORTRAN, however, included the lack of dynamic memory allocation,
and the lack of features to support object-oriented programming. Although the
emerging standard for FORTRAN-90 promised relief from these shortcomings,
few compilers (and fewer development tools) were available at the time.

C++[ES90], on the other hand, had the basic features necessary (such as
classes, inheritance, and dynamic binding) for an object-oriented implementa-
tion. Because it was first implemented as a translator into C, the language was
portable and widely available on supercomputers. Both compilers and develop-
ment tools were available and reasonably mature on most platforms. The major
concern was that the additional features of a language such as C++ would re-
sult in runtime overhead that could not be tolerated in a numerically intensive
code.

- After careful consideration of this issue, C++ was selected as the primary
implementation language for FastScat. Recognizing that most of the execu-
tion time of the program (written in any language) would be spent comput-
ing integrals and doing basic linear algebra, we took great care to insure that
these computational kernels were as efficient as possible. For instance, linear
algebra in FastScat’s vector and matrix classes was implemented in terms of
LAPACK[ABB*92] and the BLAS[DCDHY0, DCHHS8], highly optimized FOR-
TRAN libraries individually tuned on most machines (including several parallel
and vector machines). Using these FORTRAN functions, called from C++, we
were able to keep all the benefits of object-oriented programming with minimal
sacrifices in performance.

The sacrifices in efficiency we did encounter in our C++ implementation
were often due to the relative immaturity of C++ compilers rather than funda-
mental limitations of the language itself. Most have disappeared with the next-
generation compilers now being used. For example, virtual function calls, used
extensively by the surface and basis function classes, were initially very slow
and caused some code rewrites in which virtual functions calls were removed
from within large loops. This problem, however, vanished with later compiler
versions, as did other performance bottlenecks. Overall, we believe that the
minimal (and in some cases, short lived) performance penalties associated with
C++ are overshadowed by the flexibility gained by utilizing its object-oriented
features. We expect similar results could be obtained in other scientific pro-
grams by judicious use of optimized computational kernels embedded within a
flexible, object-oriented code.

23

4.5 Features and Abilities

Currently, FastScat computes scattering from bodies represented in two or three
dimensions. Applying a method of moments formulation, it can compute cross
sections with Dirichlet or Neumann boundary conditions. In 3d, it can com-
pute electromagnetic scattering from perfect conductors. FastScat has a host
of features which make it unique among scattering codes. Some are described
here.

Accurate Surface Models Surface models in FastScat are composed of tri-
angular patches which may be flat or curved. A sphere, for instance, can be
patched with flat facets, or with patches which exactly conform to the surface.
Use of curved patches can eliminate artificial creases or edges in the surface
model, providing a more accurate representation of the scattering surface.

Adjustable Accuracy of Computation FastScat has the ability to use
high-order quadrature and careful singularity removal to preserve the accuracy
and efficiency of its calculations. Program accuracy, however, is adjustable and
can be set by the user.

High-Order Basis Functions FastScat allows the use of high-order basis
functions to model current on the surface. With an accurate surface model
and collections of high-order basis functions, one can adequately describe the
surface current using fewer patches and unknowns than allowed with low-order
functions. This permits a significant reduction in the CPU time and storage re-
quired to achieve a given accuracy in modeling a scatterer or antenna[HRS¥93].
Because the cost of obtaining even greater accuracy is relatively low, by increas-
ing the basis function order in a given problem, the user can easily estimate the
accuracy of a solution.

Solution Methods The user can select one of three solution methods in
FastScat: direct LU decor?lposition, a dense iterative technique, and the FMM.
With an iterative solution method, three iterative solvers are available: conju-
gate gradient, biconjugate gradient, and bistatic biconjugate gradient.

24

- r-*

Chapter 5

Results

5.1 Validation

5.1.1 Introduction

To validate an RCS code is to verify that it computes cross sections accurately.
Sources of inaccuracy (i.e. differences between a calculated RCS and the actual
RCS for a given scatterer) can be classified into two broad categories —

e deficiencies in the abstract model of the scatterer and
o deficiencies in the way the RCS for the abstract model is calculated.

The former category is modeling error. It includes such simplifications as mod-
eling a surface as a perfect conductor, treating thin body parts as though they
actually had zero thickness, etc. The latter category is solution error. When
two codes agree on an abstract model, differences in their calculated RCS’s are
a reflection of the different ways they arrive at approximate numerical solutions
to Maxwell’s equations for the boundary conditions appropriate to that model
of the scatterer.

With method of moments RCS codes it is possible, at least in principle,
to reduce solution error to a negligibly small value by reducing the discretiza-
tion scale size. A principal design goal of FastScat is to also make it practical.
FastScat attempts to accomplish this goal by employing high-order methods.
When the solution error has been rendered negligible, the focus can shift to im-
proving the correspondence between the abstract model and the actual scatterer
in order to achieve better agreement between calculation and experiment.

In this section we discuss different ways to assess the accuracy of a computed
RCS, how accurately FastScat computes the RCS’s for various two- and three-
dimensional scatterers, and the effectiveness of FastScat’s high-order methods
(quadratures, current basis functions, and surface representation) in facilitating

25

rapid convergence to the correct answer. A more detailed discussion of this

topic can be found in [HOS*95b] and [HOS*95a].

5.1.2 Accuracy

The first step in the validation of an RCS code is computation of cross sections
for geometries whose exact cross section is known a priori. In this case it is a
trivial matter to determine the accuracy of the computed RCS. Unfortunately
there are only a few types of scatterers, such as the circle in 2d and the sphere
in 3d, that fall into this category. For both geometries there are Mie series
solutions from which arbitrarily accurate cross sections can be easily computed.
Both geometries also happen to have the kind of smooth surfaces for which the
high-order methods incorporated into FastScat exhibit their maximum benefit.

For the vast majority of problems the exact answer is, of course, not known
ahead of time so it is impossible to measure the error of an RCS calculation
directly. Nonetheless, it is possible to estimate the accuracy of a computed
RCS (for a given abstract model) by reliance on the assumption that the solution
will converge to the correct answer as the discretization scale size decreases. If,
in a series of RCS calculations for a given problem, the solution converges as
the discretization becomes finer and finer, then one can conservatively estimate
the error in the solution with the finest discretization to be of the order of the
difference between this solution and that of the next finest discretization. While
it is possible for the series of computed solutions to converge to a wrong answer,
if the code employs high-order methods and the observed rate of convergence is
high-order, this is very unlikely.

We have also compared FastScat’s results to those of other RCS codes and
to experimental data for purposes of validation. For example, we compared
FastScat’s results to those of RAM2D and CARLOS-3D for identical abstract
models of scatterers. In all cases, the results agreed, although the precision of
agreement was limited by the solution accuracy of the comparison code. The
“business card” is a problem for which we compared the results of a FastScat
computation to experimental data. A detailed description of this scatterer and
a discussion of the RCS comparison can be found in Section 5.1.2. We observed
noticeable differences that can be attributed partly to modeling error and partly
to measurement error.

Large Dynamic Range

We are particularly interested in computing scattering from objects which have
a large dynamic range in their cross sections. These types of computations
put greater stress on the numerical algorithms than computations in which
the cross section does not vary dramatically as a function of angle. Under these
circumstances, the advantages of using high-order methods to achieve acceptable
solution accuracy at all viewing angles become dramatically evident.

26

g)o

45° ‘ 135°

Bat
Geometry

o — ; -— 180°

Figure 5.1: Geometry and incident angle definitions for the 2d “bat”.

Discretization studies An example of a 2d geometry with a large dynamic
range in the RCS is the “bat”, shown in Figure 5.1. It is composed of straight
faces connected smoothly by circular arcs of radius R. There are two long
edges of length L and six short edges, each of length L/3, at right angles to
each other. All surfaces are perfect conductors. It has three high-RCS specular
reflection regions (one of which is the 2d analog of a corner cube) and a low RCS
everywhere else. With the dimensions of the bat arbitrarily chosen to be R = 1\
and L = 300A, we computed the monostatic RCS for TM scattering using high-
order current basis functions and using low-order current basis functions. The
number of unknowns was fixed at 6000 for both calculations so that accuracy
could be compared for comparable computation costs. In both cases, an exact
surface model was used and the quadrature order was set high enough so that
the additional error due to inaccurate quadratures was negligible.

The results are shown in Figure 5.2. The upper plot shows the result of
discretizing the current on the bat by means of fourth-order CBF ’s and one
wavelength long patches. There are narrow peaks at 45° and 135° as expected
and a broader peak centered at 180° resulting from the “corner square” effect.
The oscillations evident in the cross section are the result of interference, not
due to any solution error. By comparing it to the solution computed with fifth-
order Current Basis Functions (CBF) we have determined that it is accurate
to better than two significant digits at all angles. In other words, the error
is much less than the width of the plotted line. The result of using zeroth-
order CBF’s and one-fifth wavelength patches is plotted below. Whereas this
calculation generally agrees with the high-order calculation at angles where the
cross section is high, in the low cross section regions the calculated RCS is
clearly erroneous, the error exceeding 20 dB at some angles.

Figure 5.3 demonstrates this effect for scattering from a larger bat with a
similar geometry.

27

100000 ¢
10000 |
1000 |

100 |

Monostatic RCS (lambda)
=

Angle (degrees)

-y
[=]
8
S

Monostatic RCS (lambda)
S
(]

(=]
A

Angle (degrees)

Figure 5.2: Monostatic TM RCS for “bat” computed by FastScat using 6000
unknowns. Upper plot: fourth-order current basis functions & 1200 patches.
Lower plot: zeroth-order (i.e. pulse) current basis functions and 6000 patches.

28

-

1500-lambda bat

1E+7 ¢
E1E+5 4+ N
] 5
g’ &
= 1E+3 4 5 w2 eross section
g -
2 © | ~a—rel. error
o 1E+1 4
G

1E-1

theta, degress

Figure 5.3: Cross section error computing scattering from a 1500\ bat with
Dirichlet boundary conditions.

Quadrature order studies There is an interesting, incompletely understood
sidelight to this problem having to do with the quadrature accuracy required
to achieve a certain RCS accuracy. Suppose we consider separately the far-field
radiation patterns of each patch comprising the discretized bat. Then we can
view the regions of high cross section to be the result of mostly constructive
interference of the far fields and the regions of low cross section to be the result
of near cancellations of the far fields due to destructive interference. Given
this interpretation, we might expect that achieving one digit of accuracy in
the low cross section regions (where the RCS is about five orders of magnitude
lower than its peak value), should require that each element of the impedance
matrix be accurate to at least six digits. For the bat, as well as some other
scatterers we have investigated, this turns out not to be the case. In fact, we
determined the cross sections to be accurate to better than one digit at all
angles even when only four quadrature digits were requested (i.e. when the
quadrature order given by an empirical formula was set to produce impedance
matrix and excitation vector elements accurate to about four digits). Although
we have not yet resolved this puzzle conclusively, we suspect the answer lies in
the high degree of symmetry and uniformity among the patches, which could
well result in very precise cancellations between far fields that are individually
less accurate.

Series comparisons With high-order quadratures, current basis functions,
and surface representations in its arsenal, FastScat can calculate very accurate
cross sections with fewer unknowns and in less time than codes restricted to
using low order methods. In subsequent sections we demonstrate how each high-

29

10.

Bistatic RCS (lambda)
(epquiey) Jou3 sApejey

©
s
»
b
L
b
N

0 45 80
Angle (degrees)

Figure 5.4: Solid line / left ordinate — RCS of 1)-radius circle for scalar scatter-
ing in the TM polarization as a function of bistatic observation angle. Dashed
line / right ordinate — Relative error between Mie series solution and FastScat
result.

order method contributes to the overall high-order convergence of the computed
RCS to the exact answer. However, before doing so it is useful to show the
accuracy to which cross sections computed by FastScat can be validated on a
few sample geometries. For this comparison we have chosen two geometries for
which exact answers are known (circle and sphere), several for which the solution
accuracy can be estimated by observing solution convergence (eg. ellipse, ogive
and several airfoils), and one for which experimental data is available (“business
card”).

The surfaces of the circle in 2d and sphere in 3d are smooth, resulting in
smoothly-varying surface currents that can be approximated rather efficiently
using our sets of high-order CBF’s. The cross section for (scalar) scattering from
a 1)-radius circle in the TM polarization is plotted as a function of bistatic ob-
servation angle in Figure 5.4. On the same graph we have plotted the relative
difference between the Mie series solution and the result computed by FastScat
using 8 equal-sized patches, tenth-order CBF’s, and an exact surface represen-
tation. Figure 5.5 shows analogous results for bistatic (vector) scattering from
a 1A-radius sphere with 6 polarization. In this case, the FastScat computation
used fifth-order CBF’s and an exactly-represented sphere that was subdivided
into 180 nearly-equal-area patches. As the figures show, the FastScat results
are accurate to at least 10 and 6 digits, respectively, at all observation angles.
For small circles and spheres, solution accuracies approaching machine preci-
sion have been demonstrated by employing even higher order CBF’s or finer

30

10. 1E-06
— X
©]
2 1. 1E-07 &
£ <
8 o
e m
B 01 1E-08 3
o« =
o B
8 0.01 1E-09 2
0 a
m &

0.001 1E-10

Angle (degraes)

Figure 5.5: Solid line / left ordinate — RCS of 1A-radius sphere for vector scat-
tering with 66 polarization as a function of bistatic observation angle. Dashed
line / right ordinate — Relative error between Mie series solution and FastScat
result.

patching.

Other shapes We have also estimated our accuracy for scattering compu-
tations from shapes where no closed form solutions for the cross sections were
available. For example, we have included a report in the appendix of some
computations we did for the Second International Conference and Workshop on
Approximations & Numerical Methods for the Solution of the Maxwell Equa-
tions in 1993, hereafter referred to as the GWU conference. For this workshop
we computed scattering from ellipses, an ogive, single and double airfoils, and
cavities.

We estimated the error in each solution by comparing our computations with
a given discretization with those using a finer discretization. Because of our use
of higher order methods, this type of error estimate was not very expensive.
For example, on the smallest ellipse problem it took us 7 seconds to compute
the cross section to one significant digit and 10 seconds to compute an answer
accurate to 2 digits. Had we used low order techniques, it would have taken 20
to 50 times as long to get the more accurate answer.

Other participants at the workshop computed scattering cross sections from
these same shapes using different techniques. Since our computations were the
only ones with reliable error estimates, they were used as the standard by which
the accuracy of other computations was judged. Our run times were significantly
faster than those of the other participants. On workstations we computed cross

31

sections in less than a minute which were more accurate than those computed
by others requiring hours of supercomputer time.

Data comparison We have also checked the accuracy of our computations
by comparing our results to benchmark measurements made by the Electro-
magnetic Code Consortium. Figure 5.6 compares FastScat’s computation of
the cross section for scattering from a thin rectangular plate (the EMCC “busi-
ness card”) with measurements made at China Lake[WSWS92]. The FastScat
results are identical to those computed by others. The differences between these
computations and measurement seem to be due to measurement uncertainties
including such factors as registration error, non-zero plate thickness, finite solid
angles in the transmit and receive horns, and the fact that these measurements
were made in the near field.

5.1.3 High order quadratures

We have verified that our 2d and 3d quadrature techniques are high order. This
was done by computing scattering from a circle and a sphere using a combination
of patch size and basis function order sufficiently small to eliminate all sources
of error besides quadrature errors.

Unregulated Kernel

We have used two quadrature techniques in FastScat, both of which are high
order. The first, more traditional, approach does numerical integrations using
Gaussian-type quadrature rules. Singularities in the integrands are dealt with
by changes of variable which eliminate them or isolate them to end points of
the integration. Endpoint singularities are integrated using special quadratures
rules derived for this purpose.

The quadratures are considered to be high order if the achieved accuracy
grows rapidly with the time taken to perform the numerical integrations. Two
demonstrations that these quadratures using the unregulated kernel are high-
order are presented below. The first is a 2d problem scattering from a circle.
The second is for 3d scattering from a sphere.

Circle We checked the quadrature accuracy for scattering from a 5) radius
circle by making all other sources of error negligible. To find an appropriate
discretization, we divided an exact circle into 60 equal patches. We computed
the monostatic scattering cross section for a Dirichlet boundary condition with
exceptionally high quadrature order for various numbers of basis functions on
each patch. These results were compared to a Mie series solution good to 13
digits, do/df = 2.501493628335).

Table 5.1 and Figure 5.7 show the error in the cross section as a function of
the order of basis functions used on each patch. As can be seen in the figure

32

5 T T L} Ll " T L] T L
1
g
N 1
\ i : A}

o_ Al 'l ‘ ’ ‘ ["‘ ‘ /Y’\ ,)
vy b] !) cov
vl 3 A : P s L y o

1 1 ‘ ! I.‘ , f ,"‘ '\ A ’: \7
v ! Goropigvd il:‘t‘,l\ " i
-5F : ;"\]:_‘i g ! fp b b I -
‘ Al E g bt froif tinyny ‘ i ’
SR ST S O A T
@ A S (O T R B
o-10f inlte Yoy it T IR S i
5 i;l:" |l|¥ vt l‘ { 1)k ‘..J\‘*:.
B TN " i (e gt
) T I R l’1
2 0¥ it ! 5y (it gt
@ _1s TS it i pigt _
8- i 31 (A T
5 ! ' ; Y
.
y - Y i
~-20} "I |] 3 o 7
v ‘ ;o
» ' '
!
-251 ’ .
_30 1 1 L F 1 1 1 i

0 20 40 60 80 100 120 140 160 180

phi, degrees

Figure 5.6: Cross section for scattering from a 3.5) by 2 plate with an eleva-
tion angle of 10 degrees. The polarization is parallel to the edge of the plate.
The dashed curve is the measured data and the dotted curve the cross section
computed by FastScat.

o
2.1
9.5e-3
7.1e-4
2.0e-5
4.0e-7
4.5e-9
5.6e-11

S Oy || =l O

Table 5.1: Error in the monostatic cross section from a 5\ circle as a function
of basis function order on each patch.

33

0 1 2 3 4 5 6
bagis function order

Figure 5.7: Error in the monostatic cross section from a 5X circle as a function
of basis function order on each patch.

and table, the cross section converges in a high order manner to have an error
less than 10710 for basis function order 6.

Using the above discretization with basis function order 6, the cross section
was recomputed with various accuracies for the quadratures. The results are
shown in Table 5.2 and Figure 5.8. The fill times shown are CPU seconds
on a Sun SparcStation 10. There are 420 unknowns. The convergence of
the quadrature accuracy with CPU time for this problem is exceptional. By
increasing the matrix fill time by 64% the error of the quadratures as reflected
in the cross sections can be lowered by eight orders of magnitude.

Sphere A similar study to that reported above for a circle was done with a
0.5 radius sphere. First, the monostatic cross section was computed with very
accurate quadratures (6 digits were requested) for various basis function orders
to establish what discretization was necessary to eliminate all but quadrature er-
rors. Table 5.3 and Figure 5.9 show the results of this study. The relative error
as computed using the exact Mie series result of do/dQ2 = 0.04727522254319971.

Using the same discretization with basis function order 7, the cross section
was recomputed with various accuracies for the quadratures. The results are
shown in Table 5.4.

34

g R - B 0 v o o T U T mm W mm

| digits | fill [error]
0 9.1 | 2.0e-2
1 10.3 | 6.0e-2
2 10.8 | 2.8e-5
3 12.2 | 2.4e-5
4 12.9 | 3.8¢-8
5 14.6 | 3.7e-8
6 14.9 | 2.4e-10

Table 5.2: Cross section error for monostatic scattering from a 5 radius circle
with Dirichlet boundary conditions. The circle had 60 equal patches and sixth
order basis functions on each patch. The “digits” column is the number of
digits requested in FastScat. The fill time is the total number CPU seconds to
compute all matrix elements on a Sun SparcStation 10.

-1

10 T Y T T T
1072 2 1
10°} :
N 107§ 1
£
W s
510 2 3
3
10 | 1
8
o .
10 7 3 1
1070} F
10°]
10“0 1 1 1 L 1
9 10 11 12 13 14 15
CPU Seconds

Figure 5.8: Cross section error for monostatic scattering from a 5 radius circle
with Dirichlet boundary conditions as a function of matrix fill time. The circle
had 60 equal patches and 6th order basis functions on each patch. The fill
time is the total number CPU seconds to compute all matrix elements on a Sun
SparcStation 10.

35

order | error
4.1
1.2¢-1
1.8e-2
4.6e-3
1.4e-3
1.1e-4
3.7e-5
1.4e-6

] B2 G 1 BV-N U] I NCY S)

Table 5.3: Relative cross section error as a function of basis function order for
monostatic scattering from a 0.5\ sphere. Quadratures were done accurately
enough for at least 6 digits of precision.

10 v v T T T T

10 F o

-1

-t
S,
N
T
1

relative error
&

-
o
Kl

A

107k .
107} i
10-5 1 1 1 3 1 L
0 1 2 3 4 5 6 7
order

Figure 5.9: Cross section error for monostatic electromagnetic scattering from
a 0.5 radius sphere as a function of basis function order. The sphere had 20
equal patches and a sufficiently high quadrature order to get about 6 significant
digits in the impedance matrix elements.

36

| digits | fill [error |
0 71828 | 5.4e3
1 73388 | .31
2 79916 | 2.5e-4
3 81487 | 2.0e-6

Table 5.4: Cross section error for monostatic electromagnetic scattering from a
0.5) radius sphere. The sphere had 20 equal patches and seventh order basis
functions on each patch. The “digits” column is the number of digits requested
in FastScat. The fill time is the number CPU seconds to compute all matrix
elements on a Sun SparcStation 10.

Regulated Kernel

The quadratures done in FastScat with the regulated kernel are also high or-
der. Establishing this is less direct than is possible with the unregulated ker-
nel. This is because the current discretization and kernel regulation are linked.
The current discretization error can not be made negligible independent of the
quadrature error (as one can do with the unregulated kernel). However, having
already established that the current discretization is high order, one can exam-
ine the convergence of the combined current and quadrature discretizations. If
the result is high order, then both the current discretization and the quadratures
must be high order.

We have computed scattering from a 1) radius sphere using two programs,
FastScat and CARLOS-3D[PMMG92]. CARLOS-3D is a benchmark Method of
Moments program distributed by the Electromagnetic Code Consortium which
uses low-order methods. The results of the two calculations are given in Ta-
bles 5.5 and 5.6. The maximum cross section error as a function of the matrix
fill time is compared in Figure 5.10. The RMS relative errors are compared
in a similar way in Figure 5.11. For low accuracy, the FastScat quadratures
are a little faster than those in CARLOS-3D. As the accuracy increases, the

high-order methods in FastScat make it increasingly attractive over a low-order
code.

5.1.4 High order basis functions

We have demonstrated the high-order convergence of our 2d and 3d scalar and
vector basis functions. Some of these results were presented in IEEE/AP-S sym-
posia in 1993[HST*93b] and 1994[HMS*94a]. We will discuss several additional
cases below.

High-order methods reduce the power by which the cost grows as a function
of accuracy for fixed problem size. Specifically, we expect the cost to scale as
(1/€)2/#, where ¢ is the error and the value of a depends on the cost being

37

[unknowns [ﬁll time] RMS relative error [RMS max error]

30 0.18 1.2 105
120 1.6 0.12 4.6
270 4.7 0.10 9.0
480 13.3 0.042 3.6
750 31 0.023 1.9

1080 64 0.014 1.2
1470 117 0.0096 0.79
1920 203 0.0071 0.57
2430 324 0.0053 0.43
3000 491 0.0042 0.33

Table 5.5: Error in the scattering cross section of a 1A radius sphere computed

using the CARLOS-3D program.

bmknowns l fill time] solve time] RMS rel. error] max. rel. error]

12 0.35 0.01 0.10779 3.32121
120 9.94 0.26 0.06164 2.47027
210 23.48 1.17 0.01812 0.92412
340 63.89 4.56 0.01440 0.89589
210 108.64 1.19 0.01053 0.25403
340 | 236.32 4.56 0.00324 0.06576
510 | 448.96 14.69 0.00091 0.05558
840 | 547.44 72.16 0.00061 0.04110

1360 | 1196.52 305.14 9.8e-05 0.00789
2040 | 2427.18 999.15 1.5e-05 0.00122
1590 | 3749.14 472.31 5.7e-06 0.00019

Table 5.6: Error in the scattering cross section of a 1\ radius sphere computed

using the FastScat program.

38

— FastScat

maximim relatve eror

Figure 5.10: Comparison of the accuracy of CARLOS-3D and FastScat as a
function of matrix fill time. The error shown is the maximum error in the
bistatic cross section for scattering from a 1) radius sphere.

== FaetScal

Tme relatve error

10° 10 10° 10° 10'

Figure 5.11: Comparison of the accuracy of CARLOS-3D and FastScat as a
function of matrix fill time. The error in each case is the RMS relative error in
the bistatic cross section for scattering from a 1 radius sphere.

39

measured (e.g. o is 2 for memory and 3 for CPU time for a dense/direct solver)
and p is the order of the numerical method. Therefore, on a log-log plot of error
vs. cost, method order is revealed by the slope of the line connecting points
corresponding to a given method order, but different sized patches. For several
of the plots that follow, in which the cost measure is memory, we have chosen for
convenience to plot the unknowns, N, rather than memory (which scales as N'2),
on the abscissa. The error parameter plotted on the ordinate is either maximum
relative error or RMS error. Both of these are useful measures for consolidating
into a single number the error vs. observation angle data associated with each
point.

2d bodies

We have examined the high-order convergence of the current basis functions
for several geometries. In this section we will present data for a 5 circle, a
wedge-circle, a rounded square, and a bat-shaped object.

5A radius circle We studied the convergence of the cross section to the exact
answer for bistatic scattering from a 5\ circle with a Dirichlet boundary condi-
tion. An exact circular surface and sufficiently high order quadratures were used
so that all errors besides discretization error were negligible. The accuracy was
measured by comparing with the exact Mie series solution for the monostatic
cross section, do/df = 2.501493628335\. The results are shown in Figure 5.12.
As expected, the slope of the curves decreases with increasing basis function
order. The utility of using high-order basis functions is demonstrated by the
observation that the number of unknowns required to achieve a given accuracy
generally decreases as the basis function order increases.

Wedge-circle We also checked for convergence using the 6-long wedge-circle
shown in Figure 5.13. The RMS error in the cross section was computed as a
function of the number of unknowns in the problem using various orders of
basis functions and various patch sizes. As is seen in Figure 5.14, first order
basis function converge better than zeroth-order ones. Using basis functions of
order higher than the first do not seem to help much for this problem. This
1s probably due to the geometrical singularity where the curved pieces join the
straight ones. Tapering the patch size near these junctions would probably
restore the expected high-order behavior of these basis functions.

Rounded square A 2d example problem that clearly demonstrates the re-
lationship between current basis function order and rate of convergence of the
final RCS is illustrated in Figure 5.15. The TM and TE bistatic cross sections
for this body (verified to be accurate to better than 10 significant figures) are
plotted in Figure 5.16. The rounded square is simply a square whose corners

40

5-lambda radius circle, bistatic
10 T

107

'
~

3
—~—r

ms relative error
-
o
&
r

-
t=3
L
r

Figure 5.12: RMS relative error in the cross section for Dirichlet scattering by
a 5A-radius circle using various order basis functions and patch sizes.

34 221 -10% 019 139 259

Figure 5.13: Wedge-circle geometry used for scattering calculations.

41

6-lambda wedge-circls

10 ; v
0 — blo 0
10 ¢ E
<<<<< bto 1
--blo2
107} --bto3 | 4
g .
s 107k }
2
k|
[3
éw'ar]
107 1
10-57 P
N
107° L .
10' 10° 10° 10

Figure 5.14: Relative RMS error in the scattering cross section from a 6A-long
wedge circle with a Dirichlet boundary condition. Each curve is for a different
current basis function order.

incident __

Wave & <

N/

Figure 5.15: Rounded-square geometry inscribed inside a square (dashed line).
Bistatic observation angles are measured relative to the incident wave direction.

42

100.
3 10,
§
< 1.
7))
2
o 0.1
B
£ 0.01
o
0.001
0 45 90 135 180
Angie (degreses)

Figure 5.16: Plot of the bistatic cross section of a R = 1)\, L = 3\ rounded-
square from a FastScat calculation accurate to more than 10 significant figures
at all angles. Solid line — TM polarization; Dashed line — TE polarization.

have been rounded into circular arcs. The arcs make the surface smoother
so that high-order convergence is possible with our present set of 2D current
basis functions without our having to resort to patch-size tapering at sharp
corners. In FastScat’s computations of the bistatic TE cross section, an exact
surface representation was used and the quadrature error was made negligible,
so discretization error is the dominant source of error. Figure 5.17 is the plot
of maximum relative error vs. unknowns for this scatterer. Lines connect data
points of the same current basis function order and different numbers of patches.
The patches, approximately equal in size, varied in number by powers of two.
The slopes of the lines increase as the method order increases. This is con-
clusive evidence that the use of higher-order current basis functions results in
higher-order convergence of the RCS.

It 1s interesting to note how the lines associated with CBF-orders three and
four start out steeper than the order two line, but eventually bend over and
become parallel to it. Even though the tangent to the surface is continuous
everywhere, higher derivatives of the surface are discontinuous (or worse) at
each point where a circular arc meets a straight segment. In the mathematical
sense, the surface has a singularity at these points. This forces the surface
current to be singular at these points as well, eventually breaking the solution
convergence rate for current basis function orders higher than two.

Bat The final 2d geometry for which we present basis function order data is
the bat-shaped object shown in Figure 5.18. The cross section for monostatic

43

Maximum Fractional Error

Current Basls 2 . 1
Function Order el -

. a”

g -
T
o
) A 2, A 3 y W S I I |
100 1000

Unknowns

Figure 5.17: FastScat convergence rate on the rounded-square geometry as pa-
rameterized by current basis function order. The rate of convergence to the cor-
rect answer increases with increasing current basis function order. The “anoma-
lous” behavior of,grder 3 and 4 curves at high accuracies is explained in the text.

1004

3.3

33

-10.03L

-16.71
-8

A L)
16.07 24.78

Figure 5.18: Geometry for 24\ bat used in the basis function order studies.

44

Bst, 1=24

1E1

1E-2

™
&

relalive error

[~#—bio 0
=fl=bio 1
[=dr—bl 2
|==bro3

164

Figure 5.19: RMS relative error in the cross section for monostatic scattering
from a 24 bat as a function of the number of unknowns. Each curve is for a
different basis function order.

scattering with a Dirichlet boundary condition was computed for incident angles
from O degrees (nose on) to 90 degrees, in one degree increments. Figure 5.19 is
a graph of the cross section error as a function of the number of unknowns for
various basis function orders. The advantages of using high-order basis functions
are not as evident in this figure as with other geometries, although the higher-
order basis functions still show some advantage in the number of unknowns for
high-accuracy solutions. We believe greater benefits are not seen because of the
singularities in the higher derivatives of the slope of the unit surface normal
where the straight sections of the bat join the semi-circles. Another benefit,
not obvious from the graph is the reduced time to compute impedance matrix
elements for a given number of unknowns when high-order basis functions are
used. Because many basis functions are evaluated at the same points on each
patch, implementation optimizations can be made which significantly reduce the
quadrature times. For problems of this size, the computation of these matrix

45

i-lambda Diameter Sphere

1E+00

\\
1E-02 I
: \\\\ ‘

1E-01

1aend aguer

1E-03

8 AP 3 g

E 1E-04 - \
° 3
o 3
2 1E-05 \\ <3
1E-06 \\\
3 4
1E-07 T \5
1E-08 T AN Py
1E-09 7 | S B 8 8 .
10 100 1000
unknowns
basis functions/patch
-1 =2 3 -4 -5 -

Figure 5.20: Error in the scattering cross section from a 1) sphere versus number
of unknowns for basis function orders 1 < o < 6.

elements dominates the total CPU time.

3d bodies

Sphere A good demonstration of the utility of high-order basis functions for
3d problems is shown in Figure 5.20. The solution accuracy for the RCS from
a 1A sphere versus number of unknowns is plotted for various basis function
orders. The fact that our 3d basis functions are indeed high-order is clearly
demonstrated by the shape of these curves. The slope becomes more negative
with increasing basis function order, consequently the error scales as a power
of some characteristic patch length I: error o I=#°, where o is the basis func-
tion order and f is a constant. Recall that for fixed problem size and fixed
basis function order, the number of unknowns is proportional to the number of
patches.

46

5.1.5 Exact surfaces

As discussed in the 1993 IEEE AP-S Symposium[HRS193], it is important to
use surface models which accurately represent the CAD, mathematical, or man-
ufactured surface. Use of high-order basis functions permits very large patch
sizes. Without an accurate surface, one is constrained to use smaller patches
than necessary in order to keep the surface representation error within the de-
sired bounds. Addition of various surface models is straightforward in FastScat
because of its object-oriented design and implementation. We will illustrate this
with results for scattering from a 1) radius circle and a 1A diameter sphere.

Circle

We computed bistatic scattering from a 1) radius circle with three patch shapes:
o flat line segments,

e quadratic splines,

e and exact arcs.

We made other sources of error, due to quadratures and current discretiza-
tion, negligible.

The results using flat patches are shown in Figure 5.21. With more than one
basis function per patch, the error is entirely dominated by surface modeling.
Using twelve patches, the log of the cross section error can not be reduced any
lower than —1.7, no matter how high the basis function order. For patches
smaller than A/10 all benefits of using high-order basis functions are lost. The
surface modeling error dominates, even if the lowest order (pulse) basis functions
are used.

Figure 5.22 shows the results from a similar calculation using quadratic
spline patches instead of flat segments. Much higher accuracy is possible for the
same number of unknowns than was the case with the flat patch data shown in
Figure 5.21. Nonetheless, the error is still dominated by surface modeling error
for more than two basis functions per patch.

Finally, we computed the cross section using the exact surface, each patch
being a circular arc. The results in Figure 5.23 show that the computation is no
longer limited by surface modeling error. By increasing the number of patches
or number of unknowns per patch, one can achieve an accuracy limited only by
machine precision.

5.1.6 Fast Multipole Method

We have already reported[HOS*95c] our verification that the use of the FMM
can significantly reduce both the time and memory requirements for large 3d
vector scattering problems. Testing was performed on both spheres and cylin-
drical rods with hemispherical endcaps. The FMM was compared against both

47

i1-Lambda Circle, Flat Patches

log(error)

patches

1 bf/patch

Figure 5.21: Cross section error computing scattering from a 1A radius circle
with Dirichlet boundary conditions. The circle was modeled using line segments
for patches.

direct solution and dense iterative solution methods. The dense iterative solver
is faster and uses less memory for small objects, but quickly gives way to the
FMM for both rods and spheres with major dimension in excess of a few wave-
lengths. As is expected, the direct method is always slower and uses nearly the
same amount of memory as the dense iterative solver.

5.2 Benchmarks

FastScat performance, as measured in CPU time, memory usage and accu-
racy, has been benchmarked against other RCS prediction codes, in particular
RAM2D and CARLOS-3D which are distributed by the Electromagnetic Code
Consortium as their benchmark 2d and 3d method of moments codes respec-
tively. This work was completed before the beginning of this final contract year
and is reported in last years annual report[HOS*95c]. Data taken this year on
long cylindrical rods, used principally to evaluate the FMM, provided another
opportunity to compare FastScat with CARLOS-3D. These results are given at
the end of this section.

FastScat was also compared directly with a number of other RCS codes, rep-
resenting a variety of solution methods, when run on a suite of two-dimensional

48

1-Lambda Circle, Spline Patches

log(error)

patches

1 bf/patch

Figure 5.22: Cross section error computing scattering from a 1 radius circle
with Dirichlet boundary conditions. The circle was modeled using quadratic
splines for patches.

problems at the GWU workshopB. FastScat’s high-order methods allowed us to
achieve much higher accuracies using less memory and often with faster solution
times.

Rod

A benchmark geometry that we used this year to evaluate FastScat was a rod
consisting of a 0.1\ radius cylindrical tube with hemispherical end-caps. Rods
of various lengths from 0.5) to 60X were used to demonstrate very clearly the
advantage of the FMM over dense iterative solution methods and CARLOS-3D
in particular, with respect to the amount of memory required to achieve a given
solution accuracy. Since all of these codes require in-core setup and solve and
single processor machines, no problem could be solved whose requirements ex-
ceeded 500Mbyte, the current limit on our workstations. This places a stringent
limit on the size of realistic bodies that CARLOS-3D can handle. The short-
wavelength regime can barely be reached. In contrast, FastScat using a dense
solution method could tackle problems an order of magnitude larger, the FMM
improving this by an additional order of magnitude. This is a clear testament
to the use of high-order methods in solving short-wavelength scattering and ra-
diation problems and a demonstration of the success of the FMM which comes

49

1-Lambda Circle, Arc Patches

log{error)

tches 250 ' 4
- 2 3 bf/patch

Figure 5.23: Cross section error computing scattering from a 1\ radius circle
with Dirichlet boundary conditions. The circle was modeled using circular arcs
as patches.

to dominate only in this limit.

50

Accuracy = 0.1 dB

:

E i Dense
i slo =2.0 Lo
1000. 3 pe "
= F FMM
= 100 r CARLOS-3D
g. 3 siope =1.14
g 10. E
= 3
1 k
0'1 3 A dd b A 101 4 A o b At 21 1 1 Aol 2 2. 41)
0.1 1. 10. 100.

Length ())

Figure 5.24: Memory (Mbyte) required to achieve 0.1dB solution accuracy for
various length rods with a fixed 0.1 radius using CARLOS-3D, FastScat dense
solve and FastScat’s FMM. The last two points on the dense line are estimates
of the memory required, no computation was actually performed.

51

Appendix A

Reprints

¢ The Fast Multipole Method for Electromagnetic Scattering Calculations
[CRW93b]

e Faster Single-Stage Muliipole Method for the Wave Equation [CRWY94]

o FastScat: An Object-Oriented Program for Fast Scattering Computation
[HST*93a]

3D Method of Moments Scattering Computations Using the Fast Multipole
Method [HMS*94b)

Electromagnetic Scatering Compulations using High-Order Basis Func-
tions in the Method of Momenis [HMS+*94a]

Surface Modeling in C++ [HST194]

®

The Fast Multipole Method for Periodic Structures [RW94]

52

. 3

THE FAST MULTIPOLE METHOD FOR
ELECTROMAGNETIC SCATTERING
CALCULATIONS f

Ronald Coifman Vladimir Rokhlin
Fast Mathematical Algorithms and Hardware Corp.

Stephen Wandzura*
Hughes Research Labs

January 4, 1993

Abstract
The fast multipole method (FMM) provides a sparse decomposition of the dense
impedance matrix obtained by the use of the method of moments in the solution of
boundary integral equations. The consequent reduction in computational complexity
will allow accurate numerical modeling of far larger electromagnetic scattering and
radiation problems than is now possible. We give an elementary derivation and physical
interpretation of the FMM for three dimensional electromagnetic problems.

1 Introduction

This talk will give a practical, but not rigorous, expusition of the Fast Muitipole Method
(FMM). The aim is to give the computational engineer a sufficiently clear understanding of
the method to implement it with a minimum of difficulty. For mathematical background
and rigor, we refer the reader to Rokhlin’s papers{l, 2].

The FMM provides an efficient mechanism for the numerical convolution of the Green
function for the Helmholtz equation with a source distribution. It can be used to radically
accelerate the iterative solution of boundary integral equations.

We start by comparing the FMM-with the fast Fourier transform. For clarity, we then
consider the MoM for the scalar wave equation with Dirichlet boundary conditions on the
surface of a scatterer. We then show how the presciption is efficiently extended for appli-
cation to electromagnetic scattering problems. Finally we give physical interpetation and
conclusions.

2 Comparison with the Fast Fourier Transform (FFT)

In calculating radar scattering cross sections using the method of moments|3, 4, 5] (MoM)
one encounters matrix equations of the form{6] ‘

Z.1=V, (1)

YThis research was supported in part by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Air Force Office of Scientific Research under Contracts No. F49620-91-
C-0064 and F49620-91-C-0084. The United States Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright notation hereron.

0-7803-1246-5/93/$3.00 © 1933 IEEE.

48

where Z is the impedance matrix, I is the unknown current vector (representing currents
on the surface of the body), and V is the excitation vector (representing the tangential
component of the incident plane wave). The dot product represents an integral over the
surface of the scatterer. The FMM provides a sparse decomposition of the matrix Z that
can be compared to the FFT. A discrete Fourier transform (DFT) of an N-element vector
amounts to the multiplication by a dense N x N matrix M. Algebraic properties of the
DFT allow a decomposition of M into a product of sparse matrices:

M= MM;..M,, (2)

where 7 is the number of prime factors of N. In the case of the FMM, analytic properties
of Z admit a sparse decomposition of the form

Z=2+ViTV, (3)

where all matrices on the right hand side are sparse. This decomposition reduces the CPU
time and memory required for application of Z to an arbitrary vector from O (N?) to
© (N3/2). For very large problems, recursive application of the decomposition to Z’ yields 2
N log N method. However, even for problems that have an order of magnitude more variables
than those currently tractable using dense matrix techniques (N = 10°), we estimate that
the performance of the single-stage algorithm should be near optimal.

3 FMM — Scalar Scattering

For scalar scattering, the matrix elements of Z are given by
2) eiklx-x'|
Dot = —4 ’ S fu(xX 4
73 1-/; X/;dx fn(X)4ﬂ{x—x’|fn(X), ()
where {f,} are the basis functions (we naturally assume the use of the Galerkin method)
and S is the scatterer surface. By using the elementary identities:

eéklx+d| co . o
Rrar = L)@+ Di(kdh (kX)P(d- X) 5)
Ti=0
and
[#rekd Bk £) = amii (DR R), ©

one can show that

; ~
nn’! ~

any? [s /; ¥ fulx) [reREEDn ik K),

where
L

Ty(m,cos0) = 3 820+ 1)h{" () Pi(cosb). (8)
=0
For X > |x — x’ — X|, high (e.g. mechine) precision can be obtained with a modest value
of L =~ kD, where D is the maximum value of |x —x’ — X]|. This formula thus provides
for the second term of the decomposition Eq. (3) for basis functions of well separated local
support. The matrix elements of V and T are given by

Vina (k) = / LxeEXf 0), ©

49

ST
Y

and

. —ik-x.",.l L - "
Ty (k) = EE—@W— 3 (2 + DA (kX) Pil - Ko - (10)

=0

The first term Z’ of Eq. (3) represents interactions between “nearby” basis functions for
which the FMM cannot be applied. By virtue of the small number of near neighbors, Z’ is

sparse.

4 FMM — Electromagnetic Scattering

In the solution of the electric field integral equation, the impedance matrix elements take
the form(6]

Zppr = —1 &x [&X' fnj(%)G5(x = X') fr o (X'}, (11)
}: [[&% hus)Gi »

where
(12)

() 18 & eik'X—X'l
x—-x')= —_—

Gy i~ dz; 8z}, | 4m|x — x|
and the indices 7,j’ label Cartesian components. By combining the identities above and
differentiating with respect to d, one gets

Dt = Z /‘{zxfm(x)/dzx fnJ’(x)
(471' 4i'=1
/ Pk (530 = iy) XXX, (kX k- %), (13)

Now it can be easily seen that the scalar prescription can be modified to an electromagnetic
one by promotir.t V,,, to a three dimensional vector, with

AN

Vma(i‘) = /dzx eik'x [fn(m,a) (x) - kk - fn(m,a) (x)] . (14)

5 Physical Interpretation
The physics of the FMM rests on the following fact: given a field ¥(x) that satisfies the

wave equation
(V2 + k%) 9(x) =0 (15)

for all x outside a given sphere, the field can be reconstructed everywhere outside tha.
sphere from its far field(7, 8].

This means that if the field is radiated by a source density p(x), supported only within
a sphere of radius R centered at the origin:

etkix-x’|
o) = [&% e, (16)

47 |x — x|

then the contribution of the “off-shell” (¢ # k2) components in the Fourier expansion of
the Green function(9],

cel:]x--x'l dsq &9 (X-X*)
/ ((17)

drjx—x| o) q® — k2 —ie’

50

are determined for = > R (after integration over d*x’) by the radiation condition and the
“on-shell” components. The on-shell components, coming from the residue of the pole at
q® = k2, give the imaginary part of the Green function and the off-shell components give the
real part. It is important that the off-shell part is not determined by the on-shell part for
z' < R. This is related to the divergence of the series Eq. (5) for d > X . This interpretation
clarifies why one only need keep two components in V for the electromagnetic case; the
electromagnetic far field is transverse and has only two independent components.

6 Conclusion

Present methods for computing radar and other scattering cross sections are limited by
computer processing and memory requirements. The significance of the increase in problem
size made possible by the FMM can be illustrated by considering accurate calculation of
RCS for X-band radar. With current methods, the size of the largest body that can be
accurately modeled is about a foot. With the same computing power, the techniques that
we have described will incresse this to 10-100 feet. Such computational capability would
significantly reduce the technological risk of expensive projects employing stealth technology.
They may likewise revolutionize other applications of scattering computations, such as high-
frequency circuit modeling, sonar, and geophysical applications.

References

[1] Vladimir Rokhlin. Rapid solution of integral equations of scattering theory in two di-
mensions. Journal of Computationel Physics, 86(2):414-439, 1990.

[2] Vladimir Rokhlin. Diagonal form of translation operators for the Helmholtz equation in
three dimensions. Technical Report YALEU/DCS/RR-894, Yale University, Department

of Computer Science, March 1992.

[3] Roger F. Harrington. Origin and development of the method of moments for field com-
putation. IEEE Antennas and Propagation Society Magezine, pages 31-35, June 1990.

[4] Roger F. Harrington. Field Gomputation by Moment Methods. Macmillan, New York,
1968.

[5] Robert C. Hansen, editor. Moment Methods in Antennas and Scattering. Artech, Boston,
1990.

[6] Sadasiva M. Rao, Donald R. Wilton, and Allen W. Glisson. Electromagnetic scattering
by surfaces of arbitrary shape. IEEE Transactions on Antennas and Propagation, AP-
30(3):409-418, May 1982.

[7] A.J. Devaney and Emil Wolf. Radiating and nonradiating classical current distributions
and the fields they generate. Physical Review, D8(4):1044-1047, August 1973.

[8) Rudolf Peierls. Surprises in Theoretical Physics. Princeton Series in Physics. Princeton
University Press, Princeton, New Jersey, 1979.

[9] George Arfken. Mathematical Methods for Physicists. Academic Press, New York, second
edition, 1970.

51

Faster Single-Stage Multipole Method
for the Wave Equation *

Ronald Coifman
Fast Mathematical Algorithms and Hardware Corp.

Stephen Wandzura
Hughes Research Labs

Abstract

The fast multipole method (FMM) provides a sparse decomposi-
tion of the impedance matrix arising from a discretization of an inte-
gral equation equivalent to the wave equation with radiation boundary
condition. Mathematically, the sparse factorization is made possible
by a diagonal representation of translation operators for multipole ex-
pansions. Physically, this diagonal representation corresponds to the
complete determination of fields in the source-free region by the far
fields alone.

Becausethed.iagonalformofthetranslationoperatorisnotawen
behaved function, it must be filtered in numerical practice. (This does
not constitute a practical limitation to the accuracy of the results ob-
tained with the method because of the superalgebraic convergence of
the multipole expansions.) In the originally published version of the
FMM, the filtering was accomplished by a simple truncation of the

*This research was supported by the Advanced Research Projects Agency of the De-
partment of Defense and was monitored by the Air Force Office of Scientific Research
under Contracts No. F49620-91-C-0064 and F49620-91-C-0084. The United States Gov-
ernment is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation hereron.

19

multipole expansion of the translation operator. This sharp cutoff
results in an oscillatory transfer function that is non-negligible over
the entire unit sphere (i.e., in all far-field directions). Physically, the
transfer function represents the effect 2 bounded source has on a well-
separated observation region, expressed in terms of the far field of the
source. This suggests that a suitable transfer function might be non-
negligible only in the direction of the seperation vector. It turns owt
that such a transfer function may be obtained by applying & smooth
cutoff to the multipole expansion. Although such a tramsfer fune-
tion requires the tabulation of far fields in a denser set of directions,
the overall computational and storage requirements for a2 single-stage
FMM are reduced 1o O(NY3) from O(N3/2).

1 Review of FMM

The fast multipole method (FMM) for the wave equation(l1, 2] gives 2 pre-
scription for a sparse decomposition of the (impedance) matrix obtained by
discretization of the integral kernel

dr|x=x| (1)

Gx-x)=
Mathematically, this decornposition ensues from the diagonal form of the
translation operator in the far-field representation(3]. For brevity, this sum-
mary relies heavily on the exposition and notation of [2].

Briefly, the FMM works by decomposing the interactions into near-field
and far-field parts. This is done by dividing the scatterer into groups and
classifing each pair of groups as near or far. The matrix representing the near-
field part is sparse by virtue of locality. The far-field part may be factored
by using

C&‘Xﬁﬁdl ik 2 ikd . - &
~Z;;fd2k€ T(eX, k- X), (2)
where the 7 is the diagonal representation of the translation operator:
L
Ti(x,cos0) = 3 (2l + 1)A{" (k) Pi(cos §) , (3)
=0

and X is the distance between the two members of a group pair. In the
previously published version of the FMM, the sharp cutoff at [= L caused
the transfer function 7 to be non-negligible over a wide range of angle. As
we show below, examination of 7 reveals that it may be modified so that
it has support only in a narrow range of cosf near 1. The only cost of
this modification is a denser sampling of far-field radiation patterns from the

groups.

2 The Translation Operator

The transfer function 7; (x, cos) represents the interaction between bounded
source distributions separated by distance x/k (where k is the free-space
wavenumber) and 6 is the angle between the displacement vector of the cen-
ters of the groups and a direction at which the far-field of the source dis-
tribution is computed. Since we expect the fields radiated from a bounded
region to a well separated observation region to be given only in terms of
the far-field in directions that point toward the observation region, we might
expect that Tz(x,cosf) would be strongly ‘peaked for cosd =~ 1. Further-
more, since convergence of the multipole expansions requires L = kD, where
D is the diameter of the regions, we might also expect that the peak have
a width 86 oc L/x. Numerical examination of 7 reveals that this is indeed
the case; however, there are rather large oscillatory tails outside the peak.
In Figure 1, 710(30, cos) is plotted. This is the transfer function that one
would use for rather small (compared to a wavelength) groups separated
by 4.8 wavelengths. The oscillatory tails are reminiscent of leakage in power
spectrum estimation using the FFT[4]. This suggests that by using a smooth
“window function” to compute 7" rather than a sharp cutoff, that leakage to
large angles may be reduced. In fact, this is the case; even a simple-minded
cosine window function, giving

T1(x,cos6) =
% -t . o ({=L)x (1)
Ti(x,cos8) + Z T(2A+1) [l - sin —] h;/(x)Pi(cos8), (4)
& 2L

produces the localized transfer function plotted in Figure 2. Naturally, be-
cause we are taking more terms in the multipole expansion of 7, we must

21

Figure 1: Real and imaginary parts of transfer function 7 of cos 6 for L = 10,

x = 30.

=1 =0.5
=0.5

=3

Figure 2: Real and imaginary parts of the localized tramsfer function 7 of

cos@ for L = 10, x = 30.

sample the far fields in a denser set of directions appropriate to a quadrature
rule for spherical integrations exact for a larger set of spherical harmonics.
The trigonometric window function in Eq. (4) is only for purposes of illus-
tration; more efficient windows should be used in practice.

3 Complexity Reduction

A detailed analysis, to be published elsewhere, reveals that the window func-
tion of / can be chosen to minimize the suppart in solid angle of 7. This
analysis confirms the intuition, implied above, that the solid angle of sup-
port of the resulting transfer function is about 7(kD)?/(4x2), where D is
the diameter of the groups. In the © (N "/2) FMM, the operation count of
the translation operator application is & KM?, where M is the number of
groups and K is the number of far-field directions tabulated. It might now
seem that this count should be multiplied by a factor « (kD)?/(4x?) « 1/M,
giving a total count « (K/M)M? x N, which is independent of M. This
is incorrect, however, because it implies that by decreasing the size of the
groups that the number of directions at which the far-field is used can be
reduced without limit. Actually, since we must know the far-field of each

~ group in at least one direction for each other group, the number of directions

must go to a constant for very small groups. The total operation count for
application of the translation operators is thus (bN/M? + ¢) M2, where b and
c are implementation dependent constants. (Actually, a2 more careful analysis
gives a factar of In M in the b term, but it has no effect on the behavior for
large N.) Minimizing the sum of this with the operation count for the other
steps in the FMM (aN?/M, where a is another constant), one sees that, for
large problems, b is irrelevant, and the total operation count is minimized by

choosing
M (mﬂ)‘” ’)

2c

so that the total operation count is @ (N‘”). For smaller problems, where
the c term does not dominate, the operation count varies roughly as Nin N.

23

References

[1] V. Rokhlin, “Rapid solution of integral equations of scattering theory
in two dimensions,” Journal of Computetionel Physics, 86(2):414-439,
1990.

2] R Coifimen, V. Rokhlin, and S. Wandzura, “The fast multipole method:
A pedestrian prescription,” IEEE Antennes end Propagation Society
Magezine, 35(3):7-12, June 1993.

[3] V. Rokhlin, “Diagonal form of translation operators for the Helmholtz
equation in three dimensions,” Applied and Computetional Harmonic
Analysis, 1(1):82-93, December 1993.

[4] W. H. Press, B. P. Flannery, S. Teukolsky, and W. T. Vetterling, Numer-
teal Recipes — The Art of Scientific Computing, Cambridge University
Press, Caxmbridge, 1986.

- - - _ 5 P E of

- GG OE B = -

FastScat": An Object-Oriented Program for
Fast Scattering Computation

LISA HAMILTON, MARK STALZER, R. STEVEN TURLEY, JOHN VISHER,

AND STEPHEN WANDZURA

Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265

ABSTRACT

FastScat is a state-of-the-art program for computing electromagnetic scattering and
radiation. lts purpose is to support the study of recent algorithmic advancements, such
as the fast multipole method, that promise speed-ups of several orders of magnitude
over conventional algorithms. The complexity of these algorithms and their associated
data structures led us to adopt an object-oriented methodology for FastScat. We discuss
the program’s design and several lessons learned from its C++ implementation includ-
ing the appropriate level for object-orientedness in numeric software, maintainability
benefits, interfacing to Fortran libraries such as LAPACK, and performance issues.

© 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Current problems of interest in computational
electromagnetics include the prediction of radar
cross sections and the modeling of antenna radia-
tion patterns (see Fig. 1). Methods for computing
electromagnetic scattering and radiation generally
involve the solution of a matrix equation derived
from the discretization of an appropriate integral
equation (1. The matrix equation is often written

Received April 1993
Revised June 1993
FastScat™ is a trademark of Hughes Aircraft Company.
This research was partially supported by the Advanced Re-
search Projects Agency of the Department of Defense and was
monitored by the Air Force Office of Scientific Research under
Contract No. F49620-91-C-0064. The United States Govern-
ment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copvright nota-
tion hereron.

© 1994 by John Wiley & Sons, Inc.
Scientific Programming. Vol. 2, pp. 171-178 (1993)
CCC 1058-9244/94/040171-08

Z -1 =V, where the impedance matrix Z depends
on the geometry and composition of the scattering
or radiating surface, / is a vector containing the
expansion coefficients of the current density over
the surface, and the excitation vector ¥ represents
a dual expansion of the current. The number of
unknowns, /V, required for accurate modeling of
such problems is very large, and, in the past, has
severely limited problem size and solution accu-
racy.

There are two primary areas of difficulty in con-
ventional solutions of these problems. The first is
accurate computation of the Z matrix elements. In
general, each element of the N X N matrix re-
quires numeric integration of a function that is
often singular on portions of the surface. The sec-
ond difficulty is the actual solution of such a large
matrix equation. This has been done by direct de-
composition of the sometimes ill-conditioned Z
matrix (O(NV?) time), or alternatively by iterative
methods requiring repeated matrix-vector multi-
plications (0(/V?) time for each step).

Recently, a technique called the fast multipole

171

172 HAMILTON ET AL.

<3

FIGURE 1 Model scattering problem. An incident
plane wave 7 (excitation} induces a current on S which
re-radiates as the scattered wave ¢.

method (FMM) was discovered, which essentially
factors the Z matrix into sparse components [2—
5.. With this representation. the matrix-vector
multiplications required by iterative solvers can be
done in G{Vlog V') time. Thus. total solution time
is greatly reduced. allowing the study of much
larger objects.

Our ongoing effort is to develop a code capable
of accurately computing scattering and radiation
from surfaces of arbitrary shape and size, repre-
sented in either two or three dimensions. In this
program. called FastScat, we are implementing
conventional solution techniques as well as new
computational algorithms. such as the FMM. We
also plan to incorporate the abilitv to scatter from
dielectrics and other materials. and to efficiently
treat periodic bodies. In addition. FastScat is be-
ing used as a testbed to determine the effective-
ness of various enhancements such as more accu-
rate surface models. higher order expansion
(basis) functions. and more accurate quadrature
rules. :

To support this work. FastScat must be written
in such a way as to be highlv modifiable and ex-
tensible. as well as reasonably efficient. Specifi-
cally. we require a design methodology and lan-
guage support that can provide a clear
implementation of the algorithms and a sensible
structure for the underlying data. Our experience
in modifving an existing program written in For-
tran demonstrated that this. mostlv procedural.
code lacked important elements needed to incor-
porate the features described above. Instead, we
have turned to an object-oriented methodology
[6] in which features such as inheritance, data
encapsulation, polvmorphism. and dynamic
binding allow the key elements of the problem to
be expressed and manipulated in a more natural
way.

2 AN OBJECT-ORIENTED DESIGN

The design of FastScat is based on the key ab-
stractions of the physics of scattering. In the ob-
ject-oriented paradigm. a class is used to define a
new data tvpe and encapsulates not only the oper-
ations that can be performed on that type (meth-
ods), but also the implementation or actual data
structure of the type. Defining classes to model the
physics of the problem provides a clear mapping
of the theory and algorithms onto the resulting
computer code. For example. the FastScat classes
Surface, Z_Matrix, Current, and Excita-
tion come directly from the problem formulation
given in Section 1. Once defined and imple-
mented. the manipulation of these new tvpes is
straightforward and can closely resemble the orig-
inal equations from physics. thus improving code
readability. Using this approach, we have found
that when a new class or method seemed awkward
or difficult to add it often did not adequately
model the physics. As an added benefit of object-
oriented thinking, we have sometimes gained a
better understanding of physical or theoretical re-
lationships in the problem. On occasion, difficul-
ties in implementation have directed us to a flaw
or gap in our physical understanding rather than
with the design. The remainder of this section de-
scribes some of FastScat’s design and the result-
ing maintainability benefits.

2.1 Modeling Surfaces

In FastScat, the scattering surface or antenna
(scatterer) is described using a collection of ele-
mentary surfaces. In the current version of
FastScat. the elementary surfaces are limited to
patches. In two dimensions. a patch is simply a
curve in a plane, and in three dimensions, it is a
surface. The simplest 3d patch is a flat uriangle.

The Surface class hierarchy (Fig. 2) provides
support for FastScat’s surface description. Class
Surface is abstract and defines basic operations
required for all surfaces. These basic operations,
which include translate, rotate, scale, and read-
ing/writing, must then be implemented in de-
scendent classes of Surface.

A collection of suirfaces is maintained by Com-
posite_Surface, which descends from Sur-
face. An element of a Composite_Surface is
itself a Surface. This organization makes it easy
to implement many methods, and permits model-
ing of hierarchical scatterers. For example, the

Surface

/\

Elementary_Surface Compostte_Surface

e

Patch2D Patch3D

Flat_Patch2D Quadratic_Patch?D Arc_Patch2D Flat_Patch3D Spherical_Patch3D
Quadratic, Patch3D BiCublc_Patch3D

FIGURE 2 Surface class hierarchy.

translate method in Composite_Surface simply
calls the translate method of each of its elements.
An ancillary class supports iteration over all of the
elements in a composite surface.

Ulumately. the surface is described in terms of
instances of class Elementary._Surface. This
class. which is derived from Surface. currently
has two descendants. Patch2D and Patch3D. In
the future. the descendanis Wire2D and Wire3D
will be added to support the modeling of wires.
The patch classes define several methods. For ex-
ample. in Patch2D. there is a method called map.
which takes a single parameter u € [0. 1] and
returns a Vector to the corresponding point on
the patch. The endpoints of the patch are atu = 0
and u = 1. Another method is tangent. which
returns the tangent to the patch for a given u. A
parallel set of methods is defined by Patch3D.
except the parameters are u and v. These methods
are used by many calculations in FastScat. The
important point is that most of the FastScat code
is written in terms of Surface. Composite_Sur-
face. and Elementary_Surface objects. The
underlying surface model. 2d or 3d. flat, curved.
etc.. is hidden from most of the code. This eases
maintenance and the addition of new features.

2.2 Modeling the Physics

The basic principle behind FastScat’s design is to
model the physics as closely as possible. The com-
mon object-oriented approach is to identify the
entities in the problem and proposed solution and
to model these using classes. The Surface class
hierarchy was designed using this approach. Mod-
eling some of the physical concepts is more ab-
stract. Some entities. such as a plane wave. are
simple. For a plane wave, we defined a class that
contains the wave vector k and provides a method
to evaluate the wave at any point in space.

A key physics abstraction is a Surface_Func-
tion. It is defined on the surface of the scatterer

FAST SCATTERING COMPUTATION 173

and maps a particular location on the scatterer to
a tensor. The Current and Excitation classes
are descendants of Surface_Function. Various
operations are supported on surface functions. in-
cluding addition. scalar multiplication. and inner
product. These operators are used extensively in
FastScat's calculations. Although the Surface-
—Function class is currently implemented using
class Array described in Section 3.2. this repre-
sentation can and will be changed in the future to
implement a different method (Nvstrém) of dis-
cretizing the integral equation.

Closely related to Surface_Function is Sur-
face_Operator. which maps one surface func-
tion onto another. The mapping is performed by
the apply method. An important example of a
Surface_Operator is Z_Matrix (Z! which
takes a Current (/) and maps it into an Excita-
tion (V). Another example is the FMM. which is
implemented in the FMM class.

The system V' = Z - | can be solved directly
using LU decomposition if Z is dense. or by using
an iterative solver. Iterative solvers can be used for
both dense (Z_Matrix) and sparse (FMM) sur-
face operators. The iterative solvers are written in
terms of Surface_Operators and Surface-
—Functions. When support for the FMM was
added to FastScat. we only had to concentrate on
the details of the FMM as encapsulated by class
FMM. The solvers did not require modification be-
cause they are defined at a higher level of abstrac-
tion. The maintainabilitv/extensibility benefits of
FastScat’s design are discussed further in the next
section.

FastScat also contains a class hierarchy for
modeling basis functions. which is conceptually
similar to that of the surface classes. There is a
top-level abstract class Basis_Function with
descendants for two and three dimensions (Ba-
sis_Function2D and Basis_Function3D).
Descendants of these two classes describe partic-
ular basis functions, such as Legendre polynomi-
als.

2.3 Maintainability / Extensibility Benefits

One of the major objectives of FastScat was the
implementation of the FMM. In the previous sec-
tion we mentioned how the FMM fit easily into the
program’s design. This design is also helping to
achieve many of FastScat’s other objectives. For
example, to support different surface models, it is
only necessary to add a new descendant to

174 HAMILTON ET AL.

Patch2D or Patch3D. This flexibility has allowed
us to study the importance of higher order surface
models for accurate scattering calculations. and
has also turned out to be very useful for verifica-
tion. For a few special geometries. like circles and
spheres. the cross section can be computed ana-
Ivtically. In FastScat. a circle can be approxi-

mated using flat patches. As the the number of

patches increases. so does the solution accuracy.
However. even using as many as 1.000 patches
only results in a few digits of accuracy in the cross
section. Our response was to add a descendant of
Patch2D. called Arc_Patch2D, which represents
a wedge of a circle. We used the arc patches to
construct a perfect model of a circle and were able
to compute answers accurate to 11 significant dig-
1ts.

The structure of the basis function hierarchy
allows for similar flexibility. FastScat was origi-
nallv implemented in terms of pulse (constant) ba-
sis functions. Moving up to higher order basis
functions was trivial: we simply generalized the
pulse basis functions to Legendre polynomials.
The rest of the program was unchanged.®

There have been times when it was difficult to
use a FastScat component. We have found this
with the iterative solvers—they depend on Sur-
face_Function and Surface_Operator,
which in turn depend on Surface. Use of the
solvers then requires a substantal amount of
FastScat code. indicating a flaw in the design. The
solvers should have been defined on classes more
general than Surface_Function and Sur-
face_Operator. namelv Function and Oper-
ator. The surface versions would then just be
subclasses of the more general versions. and the
solvers could be used independently of FastScat
by defining the appropriate functions and opera-
tors.

3 LESSONS FROM A C+ +
IMPLEMENTATION

The design of a program is independent of its im-
plementation. In principle, one can have an ob-
ject-based design and implement it in a traditional
language (as is often done with Ada [7]). However.

* Itis not quite as simple as this. We had to plan ahead and
put a method in the basis function class that returns the order
of the quadrature required to exactly integrate the function. If
we had not. we would have lost accuracy by moving to higher
order basis functions.

to get full benefit of the methodology. we chose 10
use an object-oriented language as well.

Pure object-oriented languages. like Smalltalk
(8 and CLOS [9°. have a high overhead due to
their generality. and are not commonly available
on supercomputers. C++ {10 has the basic fea-
tures necessarv (such as classes. inheritance. and
dvnamic binding; for an object-oriented imple-
mentation. Because it has been implemented as a
translator into C. the language is portable and is
widely available on supercomputers. This combi-
nation of features and availability led us to the
choice of C++.

This section presents some of the lessons we
learned from implementing FastScat in C++.
Most of what follows is related to performance is-
sues: how to arrange C++ programs so that they
run efficiently. We also discuss some of the limita-
tions of C++.

3.1 Overhead of Object-Orientedness

The object-oriented facilities in C++ require run-
time support not needed in languages like For-
tran. If not properly addressed. this overhead can
seriously degrade performance. With our present
C++ compiler. the dvnamic binding associated
with virtual functions takes twice as much tme as
a regular function call. Consider. for example. the
descendants of class Patch2D described previ-
ously. Each patch must define the method map.
which takes a parameter u and returns a Vector
on the surface of the patch. For flat patches. this
is a very simple computation and executes in less
time than the virtual method call and return. Us-
ing inlined methods (type-checked macros) is no
help because virtual calls cannot be expanded.
However. as illustrated below, there is a simple
solution that has the performance of an inline
method. the generality of virtual methods, and
gives the compiler an opportunity to perform ag-
gressive optimizations.

We often use variations of Gaussian quadrature
to perform our integrations. The basic form of a
Gaussian quadrature to approximate the integral /
of a function f(x) over some region is

N=1

I= E wif (z:),

=0

where the w; are weights and the x; are sampling

points (abscissae) for f. Assume we want to inte-
grate the magnitude of the map vector over a

\

patch. An obvious C++ implementation is

double Al (Patch2D& p) {
double sum = 0;

for (int i = 0; i < N; i+
sum += w[i]*mag(p.map (x[i]))

return sum;

}

Although simple. this code runs slowly compared
with equivalent inlined code due to the overhead
in the virtual function call p. map. A solution to
this problem is to add a map_all method that
takes a list of places at which to evaluate map. The
actual implementation is as follows:

Class Flat_Patch2D :
public:
Vector2D map (double u)
{ return vl + u*delta; }
void map_all (int N, double* u,
Vector2D* results);

public Patch2D ({

private:
Vector2D vi, delta;

};._

void Flat_Patch2D: :map_all (int N,
double* u, Vector2D* results) {
for (int 1 = 0; i < N; i+H
results[i] = map(ufil);

}

The equivalent of function Al is then

double A2 (Patch2D& p) {
double sum = 0;

p.map_all (N, x, results);
for (int i = 0; i < N; i++)
sum += w[i]*mag (results[i]);

return sum;

}

The loop inmap_all can execute quickly because
map can now be expanded. The overhead of the

call tomap_all is negligible because the routine is

doing a relatively large amount of work. Higher

FAST SCATTERING COMPUTATION 175

level code can still be written in terms of the base
class Patch2D because map_all is virtual. Fur-
thermore. the Vector2D additon and scalar mul-
tiplication can also be expanded. This gives an
optimizer or vectorizer all the information it needs
(up to aliasing) to generate good code. An addi-
tional benefit is that the loop in function A2 is now
far simplier and can be optimized. The perfor-
mance differences berween function Al and func-
tion A2 can be dramatic. we saw over a factor of 5
improvement in our quadratures between the two
codes, keeping all other conditions constant.

A2 is slightlv more complex than Al. primarily
due 1o the fact that some piece of code has to take
responsibility for managing results. In FastScat
we have encapsulated this additional complexity
in quadrature classes so that it is completely hid-
den from the user. Users of our quadrature classes
onlv need to supply “"all’” versions of methods that
are performance critical. For the surface classes.
only 4 out of over 20 methods have ““all”” versions.

By adding some additional methods to our
classes. we have kept the benefits of object-ori-
ented programming without sacrificing perfor-
mance. The moral is to use object-oriented tech-
niques in all but the very small percentage of code
that is executed often. Such code must be under-
standable by the optimizer. meaning that it should
be short, and written in terms of fundamental
types like int and double. Fortunately. the use of
object-oriented techniques allows us to structure
the code into easily understood and fast computa-
tional kernels. The next section discusses this ap-
proach further.

3.2 Computational Kernels

FastScat does a significant amount of linear alge-
bra, which is handled by the Array and Matrix
classes. These classes call LAPACK [11] and the
BLAS [12, 13] to perform the actual operations.
LAPACK, a descendant of LINPACK and EIS-
PACK, is intended to be highly portable and exe-
cute efficiently on a large range of target ma-
chines. The BLAS is a set of basic linear algebra
subprograms, such as matrix-array (vector) multi-
plication, that are hand tuned to each machine.
For example, on a Cray, the BLAS is written to
take maximum advantage of the machine’s vector
units. A good implementation of the BLAS on a
scalar machine would ensure that code and data
are cached most efficiently and that the execution

176 HAMILTON ET AL.

of the floating point and integer units is over-
lapped as much as possible.t

The actual implementation of the Array class
is simple:

class Array {
public:
complex dot (Array& b) {
ZDOTU (&length, data, &stride,
b.data, &b.stride);

private:
complex* data;
int length, stride;

The routine ZDOTU is just a BLAS call that does a
double precision complex dot product. The
stride parameters tell how manv elements to
skip between consecutive arrav indices. Note that
because dot can be inlined. the users of Array
are effectively using the BLAS directly. This illus-
trates a useful technique: place C++ “‘wrappers”
around high quality libraries implemented in
other languages. The libraries then become C++
objects that can be used like anv other object.

By carefully isolating the critical code in an ap-
plication. the performance of an object-oriented
program can be made as good as the best pro-
grams written in tradmonal languages. One addi-
Uonal benefit is that the object- orlented code is
verv portable. Only the kemels might need modifi-
cation for a particular architecture.

3.3 €+ + Limitotions

Despite its rich set of features. C++ does have
limitations. One that we found particularly frus-
trating is the lack of multimethods [14. 15]. a gen-
eralization of virtual methods. A virtual method
dynamically dispatches to code. which is selected
based on the tvpe of its first argument (this). A
multumethod can dispatch on the tvpes of many
arguments. Consider a Tensor class that has de-
scendants for Scalars. Vectors. Second-Rank

T The array and matrix class were originally implemented
entirely in C++. The implementation used the standard C
convention that the rightmost index varies the fastest. When
we switched over to the BLAS. we converted the internal stor-
age format. Although this was a major data representation
change. not a single line of code outside the matrix class had o
be changed.

Tensors. an so on. for which we want to define a
set of arithmetic operations. The base class Ten-
sor has a virtual method mul (Tensor) that
must be defined by each derived class. The prob-
lem is in the implementation of mul in the derived
classes:

Rank2: :mul (Tensor& t) {

select (t.is_a()) {

case scalar : // do
Rank2*Scalar

case vector : // do
Rank2*Vector

case rank?2 // do Rank2*Rank2

// make higher rank class do the work
default return t.mul (*this); }

This code is ugly. it cannot be inlined. and using
is_a methods to return a tvpe tag is a poor prac-
tice. The code is also difficult to maintain. be-
cause a class of a given rank must be a friend to all
classes having a lower rank (scalar is rank 0. vec-
tor is rank 1. etc.}. With multimethods. the solu-
tion is much cleaner and potentally more efficient
because each method is responsible for only one
kind of multiplication. for example. Scalar*Vec-
tor. Other solutions are possible in C++. but they
are all similar in nature and suffer from the prob-
lems mentioned. This type of construction arises
often in mathematics and it is unfortunate it does
not have a clear expression in C++.

A second limitation of C++ is its lack of auto-
matic memory management. Of course. any sort
of memory management scheme can be 1mple—
mented in C++, but we have found that a signifi-
cant amount of effort goes into designing storage
management solutions for various classes, and
finding memory leaks. It is common for a C++
program to have several different storage manage-
ment schemes. For example, in FastScat we use a
reference counting technique [15] for the Array
class to eliminate unnecessary copving of large
objects. and an ownership-based scheme in the
Composite_Surface class for patches. Several
of the methods in a class (constructors. the de-
structor, and the assignment operator) must be
concerned with memory management. The prob-
lem with multiple schemes and methods is that
memory management must always be on the mind
of the programmer and is a distraction from solv-
ing the problem of interest. We believe that some
sort of default memory management, which can

E R - .

be overridden when necessary. would be benefi-
cial.

Finally. C++ twols are stll immature. Some
vendors have been slow to implement language
features. such as templates. Also. the lack of ex-
ception handling in most implementations makes
error handling clumsy. These problems should
disappear with time.

4 CONCLUDING REMARKS

Object-oriented programming is not without costs.
We have noticed that it takes more time to design
an object-oriented program than a procedural
one, which is consistent with some estimates that
up t0 40% of the effort required to write an object-
oriented program goes into the design phase. Also.
when object-oriented languages are used in an
overly procedural fashion (which is quite easv to
do in C++). the benefits of the methodology are
lost and the resulting code is often worse than a
traditional program. This is similar to an effect
noticed when Ada was first introduced. Many pro-
grammers were quickly retrained in the Ada syn-
tax but not its design philosophy. Of course. the
pavback to putting more effort in the design. is in
reduced debugging time and easier maintainabil-
itv/extensibility.

The use of object-oriented languages for nu-
merical applications is being hampered by the fact
that object-oriented languages are not Fortran.
Fortran is still the language of choice for a major-
ity of people doing computational science. partic-
ularly on supercomputers. There are a number of
reasons for this:

1. Supercomputer Fortran compilers typically
vectorize code better than other compilers.

2. Fortran is widely understood.

3. A great deal of Fortran code exists.

4. There is a built-in resistance to change.

In order for object-oriented design and program-
ming to make serious inroads in computational
science. scientists and programmers are going to
have to see some obvious benefits. We think the
most convincing argument will come from the ex-
tensibility of object-oriented programs. If a com-
putational scientist sees a group getting good
results quickly. by virtue of being able to easily
change their programs. the scientist will naturally

FAST SCATTERING COMPUTATION 177

become interested in the programming tech-
niques.

In summary. we based the wop-level design of
FastScart on the physics of scattering. This lead to
a flexible code that is easy to maintain and ex-
tend. and vet does not necessarily sacrifice effi-
ciency. The fundamental calculations are per-
formed by computational kernels such as the
BLAS and a small set of hand-tuned methods in
the quadrature classes. The high-level classes
simply orchestrate the operation of the kernels. In
the future. we plan to extend FastScat to handle
more complex scattering problems and to port the
code to massively parallel machines and to vector
machines such as the Crayv.

REFERENCES

[1] R. F. Harrington. Field Computation by Moment
Methods. New York: Macmillan, 1968.

(2] R. Coifman, V. Rokhlin. and S. Wandzura. *“The
fast multipole method: A pedestrian prescrip-
tion,”” IEEE Antennas Propagation Soc Maga-
zine, vol. 35, pp. 7-12. 1993.

[3] V. Rokhlin. ““Solution of acoustic scattering prob-

lems by means of second kind integral equa-

tions.”” Wave Motion. vol. 5, pp. 257—-272. 1983.

V. Rokhlin. “*Rapid solution of integral equations

of scattering theory in two dimensions.” J. Com-

put. Phys. vol. 86, pp. 414-439. 1990.

[5] V. Rokhlin. Diagonal Form of Translation Oper-
ators for the Helmholtz Equation in Three Di-
mensions. Technical Report YALEU/DCS/RR-
894. Yale University, Department of Computer
Science, March 1992.

[6] B. Mever. Object-Oriented Software Construc-
tion. New York: Prentice Hall. 1988.

[7] G. Booch, Software Engineering with Ada. Menlo
Park, CA: Benjamin/Cummings, 1983.

[8] A. Goldberg and D. Robson, Smalltalk-80: The
Language and Its Implementation. Reading, MA:
Addison-Wesley. 1983.

[9] 8. Keene, Object-Oriented Programming in Com-
mon Lisp. Reading, MA: Addison-Wesley. 1988.

[10] M. A. Ellis and B. Stroustrup. The Annotated
C++ Reference Manual. Reading, MA: Addison-
Wesley, 1990. ’

[11] E. Anderson. Z. Bai, C. Bischof, J. Demmel,].
Dongarra, J. Du Croz. A. Greenbaum, S. Ham-
marling. A. McKenney, S. Ostouchov, and D.
Sorensen, LAPACK User’s Guide. Philadelphia:
Society for Industrial and Applied Mathematics,
1992.

{12] J.]. Dongarra, J. Du Croz, 1. S. Duff, and S. Ham-
marling, -Algorithm 679: A Set of Level 3 Basic

178

HAMILTON ET AL.

Linear Algebra Subprograms.” ACM Transact.
Math. Software. vol. 16. pp. 18-28. 1990.

1 J.]. Dongarra. J. Du Croz. S. Hammarling. and

R.J. Hanson. “"Algorithm 656: An extended set of
Fortran basic linear algebra subprograms.” ACM
Transact. Math. Software, vol. 14, pp. 18-32.
1988.

[14] R. Agrawal. L. G. DeMichiel. and B. G. Lindsay.

115]

5

OOPSLA Conference Proceedings. Reading. MA:
Addison-Wesley, 1991.

J. O. Coplien. Advanced C++: Programming
Svstems and Idioms. Reading. MA: Addison-
Weslev, 1992.

Bl == o= =

B E O SE B 5 @0

3D Method of Moments
Scattering Computations

Using the Fast Multipole Method!

L.R. Hamilton P.A. Macdonald M.A.. Stalzer
R.S. Turley* J.L. Visher S.M. Wandzura
Hughes Research Laboratories, Malibu, CA 90265

Abstract

The Fast Multipole Method (FMM) dramatically reduces the time and memory
required to compute radar cross sections and antenna radiation patterns compared to
dense matrix techniques[l]. We have implemented the FMM in a method of moments
(MoM) program to compute electromagnetic scattering from large bodies of arbitrary
shape. We compare the memory and time required using the FMM to that for direct
and iterative solutions using a dense impedance matrix.

1 Introduction

We will demonstrate the improvement in computation time and memory requirements pos-
sible by using the FMM in method of moments calculations of electromagnetic scattering
and radiation from objects with surface areas greater than a few wavelengths in size. The
scaling of the algorithm is such that it becomes increasingly attractive (compared to dense
matrix methods) as the size of the body increases.

We will first present a brief review of the FMM as it applies to 3d electromagnetic
scattering. We will then discuss some details of the program in which we implemented the
FMM. Finally, we will compare the memory and CPU requirements for computing radar
cross sections using the FMM with dense matrix techniques. The three shapes we will use
for comparison are spheres, almonds, and cylinders.

2 The Fast Multipole Method

In method of moments solutions to boundary integral equations, one is faced with solving
large systems of equations of the form

Zl=V, (1)

where Z is a dense N x N matrix and I and V are column vectors of length N. N is
the number of current expansion (basis) functions. Eq. (1) can be solved by a number of
iterative schemes. These techniques involve the computation of the product of Z and a
vector I one or more times for each iteration. This operation takes O (N?) operations and
usually dominates all other operations in the iterative loop.

In the FMM, one groups the N basis functions into M groups so that the basis functions
in each group have neighboring support. For the simplest single stage FMM([1], the optimum
value for M is proportional to v/N. Let the index m run over the groups and the index o

1This research was supported in part by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Air Force Office of Scientific Research under Contract Numbers F49620~
91-C-0064 and F49620-91-C~0084. The United States Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding any copyright notation hereron.

0-7803-2009-3/94/$4.00 © 1924 IEEE. 435

refer to a basis function within a particular group. The dense matrix Z is then replaced
with the expression

Zx2'+VTV', (2)

where Z’, V and T are all sparse. Z’ are those components of the original Z matrix for
interactions between nearby regions of the target (typically within about one wavelength).
The approximation can be made arbitrarily precise by the appropriate choice of FMM
parameters in the computation of V and T'.

The components of V are given by

Voma(k) =/d’xe"k"‘ [fma(x)_éé‘fmm(x)J , | (3)

where f are the basis functions. V is evaluated at K ~ N angles k needed for a quadrature
over the surface of a sphere.
The sparse matrix T is

L
T (F) = ("4% 2@+ DA (- X)Pk - R @)
=0

where X, is the distance between the centers of the groups m and m’'. The number of
terms in the sum, L, is chosen to give the desired accuracy in the FMM expansions.

The storage required for Z’, V, and T is proportional to N3/2. The application of Z to
a vector I can be done in O (N3/2) operations as follows:

1. Compute the @ (N) vectors
$m(8) = 3 Vina(#) e - (5)
This takes O (N3/2) operations.
2. Compute the O (N) quantities

8 (F) =Y Tonrms (B)sms (E) . (6)

This also takes O (N3/2) operations.

3. The product Z can now be computed as

(Z0ma = 5 Zhyarsar It + / PV () - gm(E) . ™

ma’

The sum involves O (\/7\7) operations because of the sparsity of the matrix 2. The
numerical evaluation of the integral involves a multiplication and an addition for each
ofthe K =@ (\/]_\f) directions k. Thus, this final step also takes O (N'3/ ?) operations.

3 Implementation

We have included the fast multipole operator as one of two possible representations for
impedance operators in our FastScatT™ scattering program. The parts of the program
mvolving geometry generation, surface discretization, common matrix element computa-
tions, excitation vector computations, solvers, and far field computations are thus identical
between the solution techniques we are comparing.

436

Surface We used exact analytical representations of the surface to avoid errors associated
with inadequate geometric representations[2]. Each surface is divided into curved triangular

patches.

Basis Functions We used high order basis functions to permit efficient and accurate
parameterization of the surface current on arbitrarily large patches. The appropriate number
of basis functions per patch is determined by the precision desired in the result and somewhat
by the geometry. We utilize the Galerkin technique of using the same basis and testing
functions, thus making errors in the computed scattering cross section second order in
discretization errors in the surface currents[3].

Quadratures The required numerical integrations are carried out using high-order Gaussian-
type quadrature rules. Special rules were developed to handle the various singularities ap-
pearing in the integrands. We selected the order of the quadrature rules to give the same
precision as that determined by the discretization and FMM expansions.

Massively Parallel Architectures Recently we have started to study the implemen-
tation of the FMM on massively parallel architectures such as the Intel Paragon. These
machines typically consist of several hundred fast RISC microprocessors interconnected by
a communications network. Let T(1) be the time required to compute Z/ with one processor
and T(P) be the time required with P processors. Ideally, we would like T(P)/T(1) = O(P).
This is often difficult or impossible to achieve due to inherently sequential portions of the
algorithm and communications costs.

For the FMM, the essential problem is find an optimal distribution of the data structures
s,g, V,I,B,T, and S. We are exploring two possible distributions:

1. assign one group to each processor, or

2. assign one k direction to each processor.

In both cases, P = O(V/N), and each node requires O(N) memory and does O(N) floating
point operations per calculation of ZI. For distribution 1, the N vectors sm (k) must be
communicated between the nodes between steps 1 and 2. For distribution 2, the N3/2
complez numbers V ma(k) - gm(k) must be communicated partway through step 3. However,
this communication can be done in O(N) time by using a new communications primitive
that we call multi-gather. Furthermore, the communications can be overlapped with the
computation of currents due to the nearby interactions in step 3. We expect T(P)/T(1) we
be of O(P) for both distributions.

As an example, a 100,000 unknown problem requires a little over 300 processors each with
approximately 20Mbytes of memory which is a fairly standard configuration for massively
parallel machines. We anticipate that the time per iteration will be on the order of one
second.

4 Results

We have compared the memory and time requirements of the FMM and dense matrix
approaches for three problems: a sphere, an almond, and a cylinder with hemispherical end
caps.

Since the purpose of this paper is to compare the FMM to dense matrix techniques,
the most relevant measure of solution time is the time required per iteration using the
same iterative solver. The results are then independent of the particular iterative solver
one chooses to use. In order to facilitate comparison of FMM results to direct solution
techniques, we also compare the total time required to solve the problem with a particular
solver using the biconjugate gradient method.

437

The convergence of the solutions were checked by comparing our results to analytical
solutions in the case of the sphere, or to higher accuracy MoM solutions in the cases of the
almond, and cylinder. Arbitrarily accurate answers can be obtained by appropriate choices
of FMM constants, quadrature orders, and basis function orders.

4.1 Sphere

The first comparison case we computed was for scattering from a perfectly conducting
spheres of various radii. The computations were compared to the Mie series to measure the
accuracy of the results. We will show the memory and cpu time required for various sized
spheres. For the iterative solutions, we will show the error at each iteration and the time
required per iteration.

4.2 Almond

The NASA almond consists of a half ogive-ellipse smoothly joined to a half ellipsoid. It is
a good test of MoM codes because of the large dynamic range in the monostatic scattering
cross section. We computed scattering from the almond at various frequencies for waves
incident normal to each tip. We will compare our results to high accuracy MoM solutions
and to measured data, where available.

4.3 Cylinder

The final target we used for these comparisons is a cylinder with hemi-spherical end caps.
We used a cylinder with a radius of 0.1) and varying lengths. The results are compared to
high accuracy MoM solutions.

5 Conclusion

References

[1] Ronald Coifman, Viadimir Rokhlin, and Stephen Wandzura. The fast multipole method:

A pedestrian prescription. IEEE Aniennas and Propagation Sociely Magazine, 35(3):7-
12, June 1993.

{2] Lisa Hamilton, Viadimir Rokhlin, Mark Stalzer, R. Steven Turley, John Visher, and
Stephen Wandzura. The importance of accurate surface models in RCS computations.
In IEEE Antennas and Propagation Society Symposium Digest, volume 3, pages 1136~
1139, Ann Arbor, MI, June 1993, IEEE.

[3] Stephen M. Wandzura. Optimality of Galerkin method for scattering computations.
Microwave and Optical Technology Letters, 4(5):199-200, April 1991.

438

N =g R Sy o

Electromagnetic Scattering Computations
using High-Order Basis Functions in the

Method of Moments!

L.R. Hamilton P.A Macdonald M.A. Stalzer
R.S. Turley* J.L. Visher S.M. Wandzura
Hughes Research Laboratories, Malibu, CA 90265

Abstract

Using high order basis functions in Galerkin method of moments calculations per-
mits a significant reduction in the number of unknowns needed to achieve a given
accuracy in modeling a scatterer or antenna[l]. We have developed a set of vector val-
ued basis functions of arbitrary order with a sparse overlap matrix. We demonstrate
the reduction of computational effort for a given accuracy by computing the scattering
from a sphere.

1 Introduction
We have demonstrated that using high order basis functions reduces the effort to compute

the scattering crossection to a given accuracy[1]. We have developed a set of basis functions
that are useful for electromagnetic scattering calculations.

2 Model Problem

The model problem for this study was a PEC sphere. The Electric Field Integral Equation
(EFIE) is [3][4] ‘

~00) x Binc(x) = $a(x) x [X I)GxK) + 5V IV K), ()

where
kX=X’

FE @

The basis functions we have developed are generalizations to those of Rao, Wilton and
Glisson[3](RWG) and are supported on adjacent triangular patches. We have extended these
basis functions to arbitrary order and to allow mapping onto curved surfaces(5]. Using the
Galerkin technique, Eq. (1) can be reduced to a matrix equation by approximating J with
a linear combination of basis functions f;, multiplying both sides of Eq. (1) by the same set
of basis functions and integrating over x. Letting

G(x,x') =

Ix) = 3(x)=21ff;(x) 3)

! This research was supported in part by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Air Force Office of Scientific Research under Contract Numbers F. 49620~
91-C-0064 and F48620-91-C-0084. The United States Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding any copyright notation hereron.

0-7803-2009-3/94/34.00 ¢ 1994 |[EEE. 2166

v, = /dzx E'™(x) . f;(x) (4)
.S
Zjjr = %{/s dzx.[gdzx’G(x,x’)i}(x)-i}:(x’)—
g & [&5 67 00l) %)

where S is the surface of the scatterer, the matrix equation to be solved is

ZlI=V. (6)

3 Basis Functions

Our set of basis functions are composed of edge-based and patch-based functions. The edge-
based functions, £¢, are supported on two patches which share a common edge. The basis
function f§ is shown in Fig.2. There are two kinds of patch-based functions, both of which
are supported on a single patch. One kind, f7°, vanishes on two edges and is tangential to
the remaining edge. The other patch function, £, vanishes on all three edges. The basis
functions £§°, £, are shown in Fig. 3. A general triangular patch can be mapped to the
equilateral triangle shown in F 1g.1. The relationship between z,y coordinates and the patch
coordinates u;, uy, ug is

1 3
z=§(2u3—u1—u2) 3/-‘-“\;‘:(“1—!-42)7 (7)
where u; + up + u3 = 1. The tangent vectors for the patch are given by
0%
= [= 8
o= aul)w ®)
ox
3 —— 9
tg (auz)m3) ()

where x is the position vector for an arbitrarily shaped patch. For a flat patch, x =
0 Vi + wV; + u3V; and V,, V,, V3 are the vertices of the triangular patch. P, (z)

and P%#(z) denote the Legendre and Jacobi polynomials. The nth order edge-based basis
function is

e I3(1 — z)n+!
fa(x) = W (t1 {Pas1(1) + Pa(n)} = t2 {Pas1(n) — Pa(n)}] (10)
where
"= fi ! (11)

and 3 is the length of the common edge and g(x) is the determinant of the mapping
uy,2 — x[5]. For each edge, the nth order patch-based basis function £7* is given by

—-z)" 1
£2°(x) = % (61 {Pass() + Pa(m)} = t2 {Pasa(n) = Palm)} = 2£5,,(0)] , (12)

where I3 is the length of the edge. The n nth order patch-based functions that vanish on
all three edges are given by

zEe =122 L %L*MPW"“’ ["—4”] [Pmt2(n) = Pan(n)] .

V9(x) (n=m+1) "™ 3

(13)

2167

Figure 1: Mapping to an equilateral triangle

i L M N
Ty Wy, Wy, W, W, T, W W W W W 4

e Wy Ty, T Ty W T W W W A W W

L aba b X o N R . T T T
Rkl e R I I TN
M N - e A W > O ® @ @ @ & ¢
e s o - > > > > e s e -
Rt R R I A

Rl P Y

Ll al o

Ll ol

Lt

NN AR N N
P

NN
SSNNNN
NANNN N

Figure 2: Plot of f§

Surface Divergence These basis functions are identical to the form used in [5]. We can
then write the surface divergence as

1 aP* 4p?
V5~f(x)_-\/;(_x—)[a—ul-+~a?;] (14)

4 Results

We have compared the memory and time requirements for the scattering from a sphere
using the RWG basis functions and our high order basis functions. The accuracy of both
computations was checked using the Mie series solution. We will show the memory and cpu
time required for different basis function orders.

5 Conclusion

We have extended our previous work with high order scalar basis functions to vector basis
functions for use in the Galerkin method of moments. The use of these basis functions

significantly reduces the time and memory required to obtain an accurate solution to the
EFIE.

P

.0 0 4
-2 0 0 4 4
ce s 0143 4))] 20 ecmmm==ce
R A Y A . e m——————
ce v 0000484} 0 o o —————— @ ©
A A 0 an i EEE———— 5« @ OO
LOLAR AL Y BN B O O | o o eC——EC——m €5 & @ © ©
.nnnqqq.;uoabsll o o e eEE———T— - > @ © © ©
SN R R R N O R A A O | o > o e —————— < = © @
Sea v vy y b)) o = o CmCm———— > <D & © O
See s vy oy by o = wmec——o= e
L N O S S S T [
S~ 8 8 8) 4
R Y
~ s

4 O o e e O OmeO—C—Ee— o~ D O o = &
€ © O an Bm O —— G B O B e e O &= ® u

Figure 3: Plot of £f* and 5

References

[1] Lisa Hamilton, Mark Stalzer, R. Steven Turley, John Visher, and Stephen Wandzura.
Method of moments scattering computations using high-order basis functions. In JEEE
Antennes and Propagetion Society Symposium Digest, volume 3, pages 1132-1135, Ann
Arbor, MI, June 1993. IEEE.

[2] Lisa Hamilton, Viadimir Rokhlin, Mark Stalzer, R. Steven Turley, John Visher, and
Stephen Wandzura. The importance of accurate surface models in RCS computations.
In IEEE Aniennes and Propegetion Sociely Sympossum Digest, volume 3, pages 1136-
1139, Ann Arbor, MI, Jupe 1993. IEEE.

[3] Sadasiva M. Rao, Donald R. Wilton, and Allen W. Glisson. Electromagnetic scattering
by surfaces of arbitrary shape. JEEE Transactions on Antennas and Propagation, AP-
30(3):409-418, May 1982.

[4] Andrew J. Poggio and Edmund K. Miller. Integral equation solutions of three-
dimensional scattering problems. In Raj Mittra, editor, Computer Technigues for Elec-
tromagneiics, chapter 4. Hemisphere, New York, 1987. Second printing.

[5] Stephen M. Wandzura. Electric current basis functions for curved surfaces. Electromag-
netics, 12:77-91, 1992.

2169

B G EE Iy s

Surface Modeling in C++ *

Lisa Hamilton * Mark A. Stalzer R. Steven Turley
John L. Visher

Hughes Research Laboratories
3011 Malibu Canyon Road
Malibu, CA 90265

Abstract

In computational physics, it is often necessary to model surfaces of arbitrary shape and
complexity. Collections of connected parametric patches can be used to represent such surfaces.
This paper describes the class hierarchy we have developed to model 2d and 3d surfaces in
FastScat®. a program for computing radar cross sections and antenna radiation patterns. We
discuss how an object-oriented design and the features of C++ allowed us to implement a

complicated array of surface parameterizations, producing effective code that js easy to use and
maintain.

1 Introduction

FastScat is a program for accurately computing scattering and radiation from surfaces of arbi-

trary shape and size, represented in either two or three dimensions. Its purpose is to support the

study of recent algorithmic advancements. such as the fast multipole method [CRW93. HST*93a),
which promise speed-ups of several orders of magnitude over conventional algorithms. In addition.
FastScat is being used as a testbed to determine the effectiveness of various enhancements such as
exact surface models [HRS*93], high order basis functions [HST+93b], and high order quadrature
rules.

[HST*93c] is a broad introduction to FastScat and its ob ject-oriented design. Here, we focus on
a particular portion of the program. elaborating on the classes used to model surfaces in FastScat.
We begin with a brief description of our surface parameterizations and surface code requirements.
In Section 3 we describe the design and implementation of the resulting class hierarchy. F inally, in

the remaining sections of this paper, we discuss issues of use and efficiency related to the surface
code.

copyright notation hereron.
'Presenter. Phone: 310-317-

5894, Email: hamilt_on@macaw.hr].hac.com. FAX: 310-317-5483
!FastScat is a trademark o

f the Hughes Aircraft Company.

50 OON-SKI '94 - The Object-Oriented Numerics Conference

2 Surface Parameterizations

To model a wide range of complex surfaces (from antennas to missiles and airplanes). FastScat
requires a general surface representation. We model surfaces as collections of connected parametric
“patches,” each closely modeling a portion of the surface. In 2d, these patches are straight or
curved segments defined by a function x(u), u € [0,1]. For a straight segment, a point on the the
patch is given by

x(u) = vi +u(vy = vy), (1)

where v; and v, are the endpoints of the segment. A quadratic patch requires the specification of
a curvature vector ¢ for the following parameterization:

x(u)= vy +u(vy—vy)+u(l - u)c. (2)

Other 2d surface elements include a cubic patch, an elliptic patch (a segment of an ellipse). and an

arc patch (a segment of a circle).
In 3d. patches are supported on a triangle. Thev are defined by a function x(u;,us.u3). such

that
uy, uz.u3 2 0 . (3)

and
uy+uy+uz=1. (4)

We use the independent variables u; and u, to describe locations on the patch surface. Thus. a
location on the simplest 3d patch, a flat patch, is given by

3
x(uy.ug) = Zﬂf"i, (5)
=1

where u3 = 1 — u; — up. Here. the point u; = 1 maps onto the patch vertex v;. and the line u; = 0
maps onto the edge opposite v;,. Adding the influence of three curvature vectors c;, we define a 3d
quadratic patch as
x(u].ug)zZui(vi+(1—u;)c,~). (6)
=1
Somewhat more complicated is a spherical patch, the projection onto a sphere of a triangular patch
whose vertices lie on the sphere. This patch is parameterized by

d(uy.ug))
ld(uy, uz)]/ °

where C and r represent the sphere center and radius, respectively, and the direction vector d is
given relative to the center as

x(ul,u2)=C+T((7)

3
d(uj.uz) = Zui(vi -C). . (8)

1=1

Other 3d surface elements include a bicubic patch and an ellipsoidal patch (similar to the spherical

OON-SKI '94 - The Object-Oriented Numerics Conference 51

“ 4 ’ : '
/

Surface
ElementarySurface CompositeSurface
Patch2D ,
CubicPatch2D atch3D

FlatPatch2D EllipticPatch2D »
QuadraticPatch2D ArcPatch2D , EllipsoidPatch3D

AirFoilPatch2D SphericalPatch3D

FlatPatch3D BiCubicPatch3D
QuadraticPatch3D

Figure 1: Surface class hierarchy

patch, but a projection onto an ellipsoid).

For FastScat, we needed code not only to implement these equations, but to provide a means of
building a surface from constituent patches; computing derivatives, curvature, the metric tensor,
and tangent and normal vectors at specified points; and determining parameters such as the area,
extent, and spatial proximity of patches. We realized that the addition of new algorithms to
FastScat might place new demands on the surface model, requiring frequent changes to the surface
classes. Indeed, since one goal of our research was the effects of the surface model itself, new models
would need to be added quickly and easily. :

Examining some existing scattering codes, we found that assumptions about the surface model,
generally flat patches, were littered throughout the code. Changing the model would require several
months of work. With these issues in mind, we decided on an object-oriented design in which details
of particular surface parameterizations could be fully encapsulated, and interfaces to the surface
model would be clearly specified. In the next section, we discuss the design and implementation of
class Surface and the subclasses responsible for modeling surfaces in FastScat.

3 Class Surface

For the surface code, as for the rest of FastScat, we have adopted a design strategy in which the
essential elements of the problem are represented by C++ classes. Hence, in the surface class
hierarchy shown in Figure 1, there are classes with names such as Surface, Patch2D, Patch3D,
QuadraticPatcha3D, etc.

All FastScat surface classes are derived from the abstract base class Surface. Though most
operations allowed on a surface are defined in Surface, few are actually implemented there. Meth-
ods which depend on the specific surface parameterization, such as computing derivatives, must be
implemented at the level where that parameterization is defined. The virtual method mechanism
of C++ allows us to access such methods through interfaces defined in Surface, without regard

52 OON-SKI '94 - The Object-Oriented Numerics Conference

for the particular kind of Surface we are actually using. Yor instance. the method to translate a

surface by a given vector is defined in class Surface as follows:

class Surface {
public:
virtual Surface& translate(const RVector& delta) = O;

The implementation of this method depends on the type of the target surface. and is discussed
further in Sections 3.1.1 and 3.2. We note here, however, that defining a translate method for use
on both 2d and 3d surfaces required the invention of the space vector class RVector. from which
RVector2D and RVector3D are derived. The RVector argument to the translate method may thus
be a vector in either the 2d or the 3d coordinate frame. as appropriate.

As shown in Figure 1. a Surface may be either an ElementarySurface. such as an individual
patch, or a CompositeSurface. a collection of Surfaces (possibly other CompositeSurfaces).

These two derived classes are described below.

3.1 ElementarySurface

Class ElementarySurface is an abstract base class from which the abstract classes Patch2D and
Patch3D are derived. ElementarySurface is the base class of all surface elements which have a
parametric representation, such as the patches described in Section 2. To aid in modeling antennas.
we will eventually add wires to FastScat. creating the additional decendants Wire2D and Wire3D.

As in Surface. few methods are actually implemented in ElementarySurface. The class serves
primarily as a package used to operate on parametric surface elements. without regard to their true
object tvpe. Methods are defined here which are not appropriate for the more general Surface.
For example, integration over the scattering surface is ultimately done in terms of integrations over
the individual elementary surfaces. At this level, we choose to work with the objects directly as
members of the ElementarySurface class. where methods such as the mapping from parametric
coordinates to spatial coordinates are available. Because such methods are virtual, we need not
determine whether the elementary surface is 2d or 3d. or a patch or a wire—the language keeps
track of these details and supplies the correct implementation™.

3.1.1 Patch2D and Patch3D

As their names suggest. Patch2D and Patch3D are the base classes for 2d and 3d parametric patches,
respectivelv. The features which distinguish a 2d patch from a 3d patch are the coordinate frame
and the fact that a 2d patch has two vertices (or endpoints) while a 3d patch has three. At this
point, we can begin to implement methods such as translate. In Patch3D this method simply adds
the specified translation vector to each vertex as follows:

*Because specification of surface points in 2d requires only one parameter. whereas in 3d it requires 1wo, we take
care to define an interface which will work for both.

OON-SK1 '94 - The Object-Oriented Numerics Conference 53

class Patch3D : public ElementarySurface {
public:
virtual Surface& translate{const RVector& delta) {
vertexl += delta;
vertex2 += delta;
vertex3 += delta;
return *this;

3

private:
RVector3D vertexi, vertex2, vertex3;

};

This implementation translates the coordinate data common to all types of 3d patches. The arith-
metic operators defined in RVector perform type checking on the vector operands to insure that
only vectors of the the same dimensionality are combined. Thus. if an RVector2D were mistakenly
supplied to the the translate method above. the RVector3D operator += would throw an exception.

The relevant data for translation of flat patches (class FlatPatch3D) are the vertices, so the
translate method need not be implemented there — the method Patch3D: :translate will be called
by default. Translation of an object of type SphericalPatch3D, on the other hand, also involves

moving the the center of the associated sphere. Thus. the translate method is implemented in this
class as:

class SphericalPatch3D : public Patch3D {

public:
Surface& translate(const RVector& delta) {
sphere_center += delta; // shift center
return Patch3D::translate(delta); // shift vertices
}
private:

RVector3D sphere_center;

};

Some methods are implemented in the base class (Patch2D or Patch3D) in terms of virtual
functions implemented in derived classes. For example. consider the determinant of the metric

tensor, g. For a patch in three dimensions its value depends on the shape of the the patch only
through the partial derivatives:

0 0 2
g=detg; = g—x(ul,ug)x 3 x{uy, ug)| . (9)
uy uz

Although the derivatives themselves may need to be implemented at a lower level, g can be com-
puted in Patch3D:

class Patch3D : public ElementarySurface {
public:

54 OON-SKI '94 - The Object-Oriented Numerics Conference

// declare the partial derivative with respect to ul, u2
virtual RVector3D ppul(double ul, double u2) const;
virtual RVector3D ppu2(double ul, double u2) const;

// determinant of the metric tensor, g
double g(double ul, double u2) comst {
return norm(cross(ppui(ul,u2), ppu2(ui,u2)));

}

The cross method performs the cross product between two vectors, and norm returns the vector
norm, z° + y? 4+ z%. The partial derivative dx/0u; is implemented in Patch3D as:

RVector3D Patch3D::ppul(double ul, double u2) comst {
// derivative for a flat patch
return RVector3D(vertexi - vertex3);

b

with similar code for dx/0u;. This code is exactly that needed for flat patches, so the class
FlatPatch3D does not have its own implementation. The class QuadraticPatch3D does. however.

need new implementations for ppui and ppu2. For ppui this is:

RVector3D QuadraticPatch3D::ppul(double ul, double u2) const {
return Patch3D::ppui(ui,u2) + (1 - 2=ul)*Ci - (1 - 2%ul)=*C3;
}

Though the methods we have shown here seem simple. they are quite typical of code found in
the patch classes. Many patches we have implemented. such as the BiCubicPatch3D. have much
more complicated parameterizations than those we have discussed. They are. however. no more
difficult to add, since implementing each new patch type is really just a matter of plugging the

appropriate equations into the framework supplied by the design.

3.2 CompositeSurface

The class which represents a collection of Surfaces is named CompositeSurface. It is a list of
Surfaces, where most of the abstract methods inherited from Surface are implemented by calling
the appropriate routines for the constituent surface pieces through the virtual method mechanism
of C++.

With the use of the utility class Surfacelterator, whose purpose is to iterate over the com-
ponents of a CompositeSurface, the translation method discussed previously is implemented as
follows:

SurfaceZ CompositeSurface::translate(const RVectorg delta) {
for (Surfacelterator si(#this); !si.end(); si+<+)
// calls the virtual “translate" method for each surface
((Surface&) si).translate(delta);
return *this;

}

OON-SKI '94 - The Object-Oriented Numerics Conference 55

iy o B O B G e G G GE G o o

siteSurfaces. this method is called recursively.

If the CompositeSurface contains other Compo
Implementation of the methods for scaling and

eventually reaching the ElementarySurfaces.

rotation are similar.
An important method of CompositeSurface appends a Surface to a CompositeSurface. To

do this it needs to make a deep copy of the surface elements to be added. Unfortunately. the
types of these particular elements are not known to the user, and C++ constructors cannot be
made virtual. This lead us to defining 2 duplicate method which acts like a simulated virtual

constructor. As usual, the method is defined in Surface:

class Surface {

public:
virtual Surface*x duplicate() = O;

3

It is implemented in the derived classes by calling the class’s constructor, ie.

class FlatPatch3D : public Surface {

public:
virtual Surface* duplicate() comst {
return new FlatPatch3D(*this);

}
)

Then. the code:

void CompositeSurface::append(const Surfacek s) const {
List::append(s.duplicate());
}

duplicates the specified surface and appends it onto the surface list.

These examples show how. with the use of polvmorphism, CompositeSurface allows the ma-
nipulation of groups of surface elements as a single surface entity. This feature makes possible the
succinct expression of many operations, such as the reading and writing of complete surfaces, and

allows us to form surfaces made of a wide variety of patch types.

4 Notes on Use and Efficiency

The surface class hierarchy described here has been very important to the development and main-
tainace of FastScat. Because the design parallels the way we think about surfaces in problems of
scattering. we have found the resulting code to be more readable and less prone to error than code
we have written for similar purposes in Fortran. for instance. Manipulation and queries of surfaces
are expressed in a natural and intuitive way. Once a workable and efficient parametric description
of a patch is determined. the addition of a new surface type is relatively easy. It involves onlv the

56 OON-SKI '94 - The Object-Oriented Numerics Conference

creation of a new decendent of the appropriate patch base class. and the implementation of the

required methods (about 30 as of this writing).

Adding new surface “features” is no more difficult.
acteristics to patches in FastScat to model dielectrics. This will require the creation of new data

members and the implemention of related methods in class ElementarySurface. Occasionally. we
need to add functions to the surface class which depend directly on the surface parameterization.
In this case, new methods may need to be added at the lowest levels of the surface hierarchy. In

any case, the rest of FastScat is unchanged.
lopment of FastScat. Our surface

Efficiency has been of particular concern to us in the deve
gh order quadrature rules, which

classes are used primarily to solve integral equations using hi
points on each patch. Often the partial derivatives,

d other quantities are evaluated at those same points.
To minimize function calls, and yet to preserve the polvmorphism of our classes. we pass arrays
of data to such methods. making only a single virtual call to each method for all the points on a
particular patch. These methods. in turn, return arrays of results which can be manipulated further.
The computation of the determinant of the metric tensor (discussed previously in Section 3.1)is a
good candidate for this sort of technique. The relevant code can be rewritten as follows:

This vear we plan to add material char-

require functions to be evaluated at many
surface normals, metric tensor, curvature, an

class Patch3D : public ElementarySurface {

public:
// declare the partial derivative with respect to ul, u2
virtual RV3DArray ppui(const RArray uiu2) const;
virtual RV3DArray ppu2(const RArray uiu2) const;

// determinant of the metric tensor, g

RAirray g(const RArray ulu2) const {
return norm(cross(ppul(uiu2), ppu2(uiu2))); }

].’ .

RV3DArray Patch3D::ppui(const RArray uiu2) const {
// return the number of coordiantes in the array
int ¥ = ulu2.length(}/2;

// compute derivative at N points
return RV3DArray(N, vertexl - vertex3);

}

RV3DArray QuadraticPatch3D: :ppul(const RArray uiu2) const {
int N = uiu2.length()/2;
// compute derivative at N points
RV3DArray ppulhd(Patch3D: :ppui(uiu2));
for (imt m = 1; n <= N; n++) {

int index = n*2;
double ui = ulu2(index-1);
double u2 = ulu2(index);

ppuiA(n) += (1 - 22ul)=C1 - (1 - 2=ul)=C3;

OON-SKI '94 - The Object-Oriented Numerics Conference 57

5 G B SR o o5 B

)
return ppuli;

3

In the above implementation, we compute ¢ for several points at once. Thus, an array of points

(RArray) is passed to the derivative functions. and an array of vectors is returned (RV3DArray).
The cross method performs the cross product between corresponding vectors in arrays of vectors,
and norm returns an array of the vector norms. 2 4 y2 + z2. This technique resulted in a factor of

five speed-up over the “one point at a time’ strategy.

5 Concluding Remarks

We have developed a general purpose surface class library for the representation of complex, contin-
uous and discontinuous surfaces made up of collections of parametric patches. We have found that
a robust program design requires a good understanding of the problem, and of the possible future
requirements of the implementation. The surface classes described are the result of several design
iterations. In particular, our first attempts were very inefficient and the program spent most of its
time doing virtual function calls instead of floating point arithmetic. Fortunately, having followed
the rules of object-oriented programing. most of the redesigned code was sufficiently isolated that
damage to the rest of the program was minimal.

In the early stages of this work, many recommended against our use of an object-oriented design
and C++ for FastScat. Although, from time to time, we have had to work around problems related
to immature development tools, compiler bugs. and language elements not being implemented, we
are confident that object-oriented methods have been beneficial. In 1993, FastScat excelled in
speed and accuracy in a competion at the Second International Workshop on Approximations and
Numerical Methods for the Solution of the Maxwell Equations. Although our success is primarily
a result of our advanced numerical techniques, these would have been difficult, if not impossible,
to implement in this much generality without the use of object-oriented programming techniques.

Acknowledgements The authors would like to thank Stephen Wandzura for useful discussions
of surface parameterization and his guidance in the determination of our long-term implementation

goals.

References

[CRW93] Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. The fast multipole
method: A pedestrian prescription. IEEE Antennas and Propagation Society Mag-
azine, 35(3):7-12, June 1933.

[HRS*93] Lisa Hamilton, Vladimir Rokhlin. Mark Stalzer, R. Steven Turley, John Visher, and
Stephen Wandzura. The importance of accurate surface models in RCS computations.
In IEEE Antennas and Propagation Society Symposium Digest, volume 3, pages 1136-
1139, Ann Arbor, MI. June 1993. IEEE. .

58 OON-SKI '94 - The Object-Oriented Numerics Conference

HST+93a] Lisa Hamilton, Mark Stalzer. R. Steven Turley, John Visher, and Stephen Wandzura.
p

Scattering computation using the fast multipole method. In IELE Antennas and Prop-

agation Society Symposium Digest, volume 2, pages 852-855, Ann Arbor, MI. June

1993. IEEE.

[HST+93b) Lisa Hamilton, Mark Stalzer, R. Steven Turley, John Visher, and Stephen Wandzura.
Method of moments scattering computations using high-order basis functions. In JEEE
Antennas and Propagation Society Symposium Digest, volume 3, pages 1132-1135, Ann
Arbor, MI, June 1993. IEEE.

[HST+93c] Lisa Hamilton, Mark Stalzer, Steve Turley, John Visher, and Stephen Wandzura.
FastScat: an object-oriented program for fast scattering computation. In Proceedings
of the First Annual Object-Oriented Numerics Conference, pages 247-256, Corvallis,
OR, 1993. Rogue Wave Software.

OON-SKI '94 - The Object-Oriented Numerics Conference 59

NN B iR ER GBF G W

THE FAST MULTIPOLE METHOD
FOR PERIODIC STRUCTURES!

Vladimir Rokhlin Stephen Wandzura®
Fast Mathematical Algorithms Hughes Research Labs
and Hardware Corporation Malibu, CA 90265

Hamden, CT 06514

Abstract

The fast Multipole method (FMM) can be applied to the computation of
radiation and scattering from infinite periodic structures by applying the Ewald
summation technique to the FMM translation operator. When the FMM group
is taken to be a unit cell in the structure, this results in a large saving in the
setup times compared to a straightforward FFT approach.

1 Introduction

The fast Fourier transform (FFT) can be used to accelerate the computation of
radiation or scattering from an infinte periodic structure(1]. For many problem di-
mensions of interest, the computation of Galerkin matrix elements of the Helmholtz
operator dominates the calculation time. This is because of the large number of eval-
uations of the periodic free-space Green functions required to do accurate quadra-
tures. The fact that most of the required computation represents far interactions
suggests that the fast Multipole method[2] (FMM) might be used to ameliorate the
problem. In this paper, we show how this can be done; the two basic parts of the
calculation being the the splitting of the interactions into near and far parts, and
the application of the Ewald summation technique to the Hankel functions that ap-
pear in the FMM translation operator. If the FMM group taken to be a unit cell

(which is optimal, unless the unit cell is more than several wavelengths in extent),

no savings in the application of the impedance matrix results, but the setup time

is vastly reduced. In essence, the FMM simply provides an efficient mechanism for

computation of the matrix elements of the periodic Green function, which can then

be solved in the conventional way.

2 Details

For clarity, we analyse the technique for 1d arrays only, the extension to 2d being
straightforward. We consider an infinite array that has a current that is represented
by Galerkin expansion coefficients Ja,5, where a labels the unknowns on a single

This research was supported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and was monitored by the Air Force Office of Scientific Research under Contract
Numbers F49620-91-C-0064 and F49620-91-C-0084. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes notwithstanding any copyright no-
tation hereron.

N EmAAS AAAA N N m s A A AR e em—. Y]

element and 3 labels the element within the array. The periodicity of the structure
is refiected in the translational symmetry of the impedance matrix,

Zopwrp = Zow(B—F) - (1)
The current is assumed to be periodic with “supercell” period N:
Jo8 = Jo, 84N - @)

The spatial displacement induced by & unit increment of S is denoted S. The
translational symmetry of the impedance matrix and the current enables one to
rapidly apply the matrix by discrete Fourier transformation in f, so that application
requires @ (NU?) operations, where U is the number of unknowns per unit cellf1].
One may obtain an arbitrarily accurate approximation of the response of an infinite
array to any excitation by using a sufficiently large value of N. :

2.1 Separation of the free-space Green function

Since the factorization of the FMM can only be applied to interactions that are
sufficiently far, we split the impedance matrix into near and far parts:

Z=2+M, (3)

where Z'(8- ') =0 for k|- B|S> L, M(f-F)=0for k|B-f'|S<=L, kis
the free space wavenumber and and L is the number of terms kept in the summation

of the FMM translation operator.
The advantage of the nesr-interaction matrix Z’ is that no sums are needed in

its computation to represent the (supercell) periodicity. Its computation is thus

exactly like that for arbitrary structures.
The advantage of the M is that since it may be factorized by the FMM method,

the sums representing the supercell periedicity may be confined to the FMM trans-
lation operator T, resulting in far fewer time consuming Ewald summations. After
construction of the FMM factorization, the matrix elements of M (8— (') may be
computed by matrix multiplication, added to those of Z’, and Fourier transformed
to obtain|l} Z,.(g), where ¢ is the Fourier transform variable conjugate to 8 — §'.

2.2 Ewald summation technique for the FMM translation operator

The translation operator for the periodic structure

- RN - 4
T(0-8.P =gy 3. 2+ DK EXapam)Pk- Zogane), (4
, y=—00 i=0
were Xggr = (B — B')S, and unit vectors are denoted as £ = x/z. The Ewald
summation technique[3, 4] works by splitting the potential

&(x) = Pi(k - £)h{" (kz) (5)

425

\

< e rrepapegyry

into two pieces, one that decays rapidly in space, and the other that has a rapidly
convergent Fourier transform:

(x) = $(x)+ & (x) (6)
+3/2 A
di(x) = \/g&%,—ek /apy(k - 2)
7 a2 (1O k) - kRG] (@)
. +2,~(p?~k3) /4a;
b = g Ah-e) [T P T i) ®

where a is a constant chosen to optimize the computation. The $(x) part may be
summed directly (along with the subtraction of any discrete parts that are included
with Z’) because the sum may be truncated (at distance o 1/,/a) with arbitrarily
small error. The indefinite integral in $(x) is a function of one variable (z), and so

may be tabulated and interpolated. The sum over the & part can be done using the
identity

i $(x+7S) = % }oi /mdz"expzﬂldé(x+z'§) 9)

y=-0c0 p=—c0 V—® S
2t L 0= 2miuz

= Tch(k-S) wcp(—
k+1g “ng S

2npu, e~(F*-4%)/4a
[dop+indms ~, (10)
2xu/S pS 'p? —k? —ic
where the sum over 4 may be truncated with arbitrarily small error. (The dz’
integration is considerably simplified because x and S are parallel.) The integrations
over p may be tabulated as a function of 4 and can be done numerically using

00 ; - k2
A e A O [lB)=E) (11)
References

(1] Winifred Kummer, R. Steven Turley, and Stephen Wandzura. Application of
the fast Fourier transform to infinite periodic structures. In JEEE Antennas

and Propagation Society Symposium Digest, volume 3, pages 1246-1249, Ann
Arbor, MI, June 1993. IEEE.

(2] Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. The fast multipole

method: A pedestrian prescription. IEEE Antennas and Propagation Society
Magazine, 35(3):7-12, June 1993.

(3] J. M. Ziman. Principles of the Theory of Solids. Cambridge University Press,
Cambridge, second edition, 1972.

,» and P. Sheng. An efficient numerical evaluation
of the Green’s function for the Helmholtz operator on periodic structures.
J.Comp. Phys, 63:222-235, 1986.

Appendix B

Second International
Conference and Workshop
on Approximations &
Numerical Methods for the

Solution of the Maxwell
Equations

53

FastScat’, Hughes Research Laboratories:

L.R. Hamilton, P.A. Macdonald, M.A. Stalzer, R.S. Turley,
J.L. Visher, S.M. Wandzura

INTRODUCTION

We ran the problems for this symposium using the FastScat program developed
at Hughes Research Laboratories. The current version of this program computes
electromagnetic scattering from arbitrary conducting shapes in 2 and 3 dimensions.

The computations in FastScat are based on the application of the method of
moments to the (frequency domain) electric field integral equation (Rao, Wilton
& Glisson 1982). We have taken advantange of recent research demonstrating the
importance of using accurate surface descriptions (Hamilton et al. 1993), high order
basis functions (Hamilton et al. 1993a), and careful quadratures (Ma, Rokhlin &
Wandzura 1993).

All of the problems were computed with exact analytical surfaces, eliminating
any errors resulting from inadequate geometry descriptions. This eliminated errors
introduced by approximating curved surfaces with line segments or piecewise
continuous polynomials as is often done.

We have found that the use of high order functions in the expansion of the surface
current saves both memory and CPU time over low order basis and testing functions
such as é-functions, pulses, or “rooftop” basis functions. We use the Galerkin technique
because of decreased sensitivity of far field quantities to errors in the surface current
(Wandzura 1991).

An important feature of FastScat permits users to choose an appropriate trade-off
between computation speed and accuracy. We were thus able to adjust patch sizes,
basis function orders, and quadrature orders to get reliable estimates of the accuracy
of our computed cross sections. Our use of high order methods permits achieving extra
digits of precision with only modest increases in required computer time and memory.

BASIS FUNCTIONS

For 2d scattering, the surface elements (patches) in FastScat may be flat or curved
segments which are parameterized by a function Z(u), 0 < u < 1. In the 2d Dirichlet

! FastScat is a trademark of Hughes Aircraft Company.

2 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

problem (TM), we use an orthonormal basis set in which the n** order member is
given by

falw) = L2221 p 90 1), (1)
9(v)
where P, are the Legendre polynomials, and g(u) = |dZ/dul?. Using orthonormal

functions generally provides for the best conditioned impedance matrix, and this
choice makes the iterative solution to the MoM equations invariant under orthogonal
transformations.

The integral equation for the Neumann (TE) boundary condition requires
computation of the tangential derivative of the basis functions, which must therefore
be continuous across patch boundaries. In this case, we use a “rooftop” function, which
is non-zero and continuous over pairs of adjacent patches, as the lowest order member
of our set. For every two touching patches, p* and p~, we define the basis function as
the sum of two functions, f* and f-, each non-zero on only a single patch. Assuming
that p* and p~ share their endpoint corresponding to u = 1 and u = 0, respectively,
(ie. p*(1) = p~(0)) we write

fHuw) = (""(”) = (2)

97(0)) /g+(u)
() = [¢ g-(0)} 1-u
£)-< mn) = 3)

Thus, both functions are non-zero at the shared endpoint and then decrease to zero
at the other. The constant multipliers in Equations (2) and (3) make the functions
continuous at the shared patch boundary. We complete the set with a series of higher
order polynomials defined over individual patches which vanish at both endpoints:

fo(w) = Dor2(2u —JL(—U)P,.(% ud) SR @

The basis functions in the set are almost all orthogonal.

RESULTS

In the following sections, we present the results for problems E1l,E3,E4,ES6 0.1,
A1, A3, A5 A7, C.1, C2, C.3. In each case we have chosen the bistatic angle so
that forward scattering is an angle of 180° and monostatic scattering (backscattering)
is an angle of 0°.

FastScat is capable of computing RCS with selectable accuracy. We present results
accurate to the plot resolution. Superimposed on the standard carteisian plot in
workshop format, we have included graphs of the cross section error for compuations
with about 2 significant digits. The error was computed by taking the results with 8
significant digits to be exact.

FASTSCAT, HUGHES RESEARCH LABORATORIES 3

ELLIPSES

The ellipses were segmented using elliptical sections. Let the equation of a point on
the ellipse, (z,y), be given by

z = acos(u) , (4)

y = bsin(u); (5)

where a and b are the lengths of the semi-major and semi-minor axes and u is a
parametric coordinate which ranges from 0 to 7. Each segment of the ellipse had an
equal range in u, causing the patches near the two narrow ends to be slightly shorter
than those in the flatter regions. We used 8 patches for problems E.1 and E.3 and 40
patches for the larger ellipses in problems E.4 and E.6. A 20 patch discretization we
used for problems E.4 and E.6 is shown in Figure 1.

20X ELLIPSE, 40 PATCHES

Figure 1 Sample discretization for problems E.4 and E.6.

4 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

i 90

m
T
5]
£ -10 =

-20 =

-30 =

-40] i] l I

0 80 180 270 360

thete, degrees

0.0¢

— 0.06

— -0.03

~ -0.06

— -0.09

0.12

error

Figure 2 Cross Section for TM Scattering for Problem E.1. The light curve in the Cartesian

plot is the estimated error in the result.

B

FASTSCAT, HUGHES RESEARCH LABORATORIES

30 0.09
20 — — 0.06

10 = — 0.03

0 0.00

RCS, dB
error

-10 ~ 0.03
20 7 — -0.06

-30 ~ -0.09

-40 g T T T T I T 0.12
0 90 180 270 360

theta, degrees

Figure 3 Cross Section for TE Scattering for Problem E.1. The light curve in the Cartesian
plot is the estimated error in the result.

6 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

! s0
i
/
l/
120
30 03
20 = ~ 0.2
10 = — 0.1
8 o ’% = 0.0
w- i g
€ -0 — — 0.1
20 = %} — -0.2
30 = — 0.3
-40 7 T 7] i 0.4
0 S0 180 270 360

theta, degrees

emor

Figure 4 Cross Section for TM Scattering for Problem E.3. The light curve in the Cartesian

plot is the estimated error in the result.

FASTSCAT, HUGHES RESEARCH LABORATORIES

RCS, dB
eror

Figure 5 Cross Section for TE Scattering for Problem E.3. The light curve in the Cartesian
plot is the estimated error in the resuit.

8 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS
0
330 e T ~.._ 30
e /",_,,-*"‘"*“«\N\ _v\'
7 O \,, 5
4 - NN
s00 P - N\, », 60
. 4 X

P 4 - . .

;o XTI VY
i/ < PO SN ¢ AU
;o f p : - N L
§ i ! N\, \ \ 3
b {7 Af oy by
H ! { ! I H FH .
Pl P TNy L LT

270 et] 3
i ! O T iq ! f i
VA AR]
Loy \ \‘ N 20 N ,,l / 'I
% 5 P LI g

\\ % \\ K \ ~Z0 5 7 /1 [!
\ N \ b ~ > ! / /

'\\ \ 4 3 \ iy el * } 7 K

N ~ - /7 /
", . e - . /120

200 N - 7 i

™ S Lo F o

\ N, Sy -
N \\... vt /" 30d8

210 ™~ _ N/ 7 150
180

RCS, dB
arror

0 S0 180 270 360

theta, degrees

Figure 6 Cross Section for TM Scattering for Problem E.4. The light curve in the Cartesian
plot is the estimated error in the result.

FASTSCAT, HUGHES RESEARCH LABORATORIES

270 }

0.15

— 0.10

RCS, dB

0.05
0.00
' 005
~ .0.10

— -0.15

theta, degrees

-0.20

360

emor

Figure 7 Cross Section for TE Scattering for Problem E.4. The light curve in the Cartesian

plot is the estimated error in the result.

10 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

RCS, dB

-40 ' l ; !
0 90 180

theta, degrees

270

360

— -0.2

= -0.3

0.4

error

Figure 8 Cross Sectior for TM Scattering for Problem E.5. The light curve in the Cartesian

plot is the estimated error in the result.

s

FASTSCAT, HUGHES RESEARCH LABORATORIES

RCS, dB
error

Figure 9 Cross Section for TE Scattering for Problem E.6. The light curve in the Cartesian
plot is the estimated error in the result.

11

12 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

OGIVE

The ogive was patched using six arcs of equal length. The four patches at the tips
were then subdivided a number of times to permit better modeling of the current
singularities there. In Figure 10, we show an example of the ogive patching when each
of the end segments was tapered 3 times.

0.50
0.40 -
030
0.20{-

0.0 -

g

0,10 -

0.20—

-0.30

<0.40 —

-0.50 | { 1 |
-0.50 -0.30 -0.10 0.10 0.30 0.50

Figure 10 Sample discretization for problem O.1.

l

FASTSCAT, HUGHES RESEARCH LABORATORIES 13

270 ¢

0.09

— 0.06

m
°]
w . s
g -10 - — -0.03

-20 — -0.06

-30 = — -0.09

-40 T T T T T 1 T -0.12

0 80 180 270 360

theta, degrees

Figure 11 Cross Section for TM Scatterin
plot is the estimated error in the result.

g for Problem O.1. The light curve in the Cartesian

14 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

RCS, dB

theta, degrees

270

360

0.3

= 0.2

— 0.1

0.0

o
- 0.2

= -0.3

0.4

eror

Figure 12 Cross Section for TE Scattering for Problem O.1. The light curve in the Cartesian

plot is the estimated error in the result.

FASTSCAT, HUGHES RESEARCH LABORATORIES

AIRFOILS

The patch sizes on the airfoil were chosen similarly to those for the ogive. Equal length
patches were used along the surface except near the tips. At the tips the patches were
tapered to better model the current singularity there. Figures 13 and 14 show examples

of how the single and double airfoils were discretized.

2,00 1

a9

1.20 -

0.80 -

0.40 |-

-0.40

< -

-0.80

T

-1.20 |-

-1.60 -

.2.00 1 | I)
0.00 0.80 1.60 2.40 3.20 4.00

X o=

Figure 13 Sample discretization for problems A.1 and A.3.

2.00 — -
vam-
o
1201 4 " " "
o
W W am Tae W am

0.80 [~
0.00 -
<080~

<1.20 -

<

-1.60

-2.00 ! . ! R
0.00 0.80 1.60 2.40 3.20 4.00

Figure 14 Sample discretization for problems A.5 and A.7.

16 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

0.15

— 0.10

= 0.05

RCS, dB

0.00

— -0.05

= -0.10

~ 0.15

theta, degrees

-0.20

360

error

Figure 15 Cross Section for TM Scattering for Problem A.1. The light curve in the Cartesian

plot is the estimated error in the result.

FASTSCAT, HUGHES RESEARCH LABORATORIES

30.0 0.15
20.0 — - 0.10

10.0 — - 0.05

S 00- ~ 0.00
2 -100 e~ -0.05
-20.0 — - .0.10
-300 — - 0.15
-40.0 Y T T I] <0.20

0 90 180 270 360
theta, degrees

error

Figure 16 Cross Section for TE Scattering for Problem A.1. The light curve in the Cartesian

plot is the estimated error in the result.

17

18 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

8.0
6.0

— 3.0

=1 0.0

-40 ; I y i
0 80 180

theta, degrees

270

error

Figure 17 Cross Section for TM Scattering for Problem A.3. The light curve in the Cartesian

plot is the estimated error in the result.

ISy

FASTSCAT, HUGHES RESEARCH L

ABORATORIES

RCS, dB

-10.0
-20.0
-30.0

-40.0

error

180 270 360

theta, degrees

Figure 18 Cross Section for TE Scatterin
plot is the estimated error in the result.

g for Problem A.3. The light curve in the Cartesian

19

20 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

30 10.0

RCS, dB
error

~40 [l ‘I ¥ I ¥ I ¥ ‘1 2.0
0 80 180 270 360

theta, degrees

Figure 19 Cross Section for TM Scattering for Problem A.5. The light curve in the Cartesian
plot is the estimated error in the result.

FASTSCAT, HUGHES RESEARCH LABORATORIES

e

e
S

aava

270 ;

USRS
o
ST
el
P

s
-~
-

30.0 0.3
20.0 — — 0.2
10.0 = — 0.1
g 00— ~ 0.0

e .
€ -100 — 0.1
-20.0 ~ 0.2
-30.0 ~ -0.3
-40.0 Y] T T T T T 0.4

0 90 180 270 360
theta, degrees

error

Figure 20 Cross Section for TE Scatterin
plot is the estimated error in the result.

g for Problem A.5. The light curve in the Cartesian

21

22 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

error

thete, degrees

Figure 21 Cross Section for TM Scattering for Problem A.7. The light curve in the Cartesian
plot is the estimated error in the result.

u

FASTSCAT, HUGHES RESEARCH LABORATORIES

——

RCS, dB

theta, degrees

270 360

error

Figure 22 Cross Section for TE Scattering for Problem A.7. The light curve in the Cartesian

plot is the estimated error in the result.

23

24 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

CAVITIES

The patch sizes on the cavities were of equal length except near the exterior corners. At
the corners, the same kind of tapering was done as for the ogive and airfoils. Figure 23
shows the cavity for problems C.1 and C.2 with a single taper at each exterior corner.

as
asd
voa4
oo
: 52 24 D& 23 4D 42 48
iy
1.0 RS, SUST
P e e a—————
é 0.0 L
05 : — - A |
«1.0<
s i 1 T i
0 1 2 3 4

X o=

47, CAVITY, 55 PATCHES

Figure 23 Sample discretization for problems C.1 and C.2.
Figure 24 is the cavity for problem C.3 with each corner patch subdivided twice.

10 7

<t

7.5 - 254

w
1
.
[¢
3
!
1
i

2.5 = T T T S T

L o

25 o gl L PR S S T T S

5 o

7.5

-10 <

1
0 5 10 15 20
Xo=
207, CAVITY, 86 PATCHES

Figure 24 Sample discretization for problem C.3.

FASTSCAT, HUGHES RESEARCH LABORATORIES

RCS, dB

9.0
— 6.0
— 3.0

— 0.0

— 6.0
— -9.0

l T I T '12.0

0 90 180 270 360

theta, degrees

error

Figure 25 Cross Section for TM Scatterin
plot is the estimated error in the result.

g for Problem C.1. The light curve in the Cartesian

26 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

30.0 0.3
20.0 = - 0.2

10.0 Iy 71— 0.1

g 0.0 - == 0.0
g -100 - 1 - .0.1
-200 - - .0.2
-30.0 = - 0.3
-40.0 =] y I T 0.4

0 0 180 270 360

emor

Figure 26 Cross Section for TE Scattering for Problem C.1. The light curve in the Cartesian

plot is the estimated error in the result.

FASTSCAT. HUGHES RESEARCH LABORATORIES 27

RCS, dB
error

-40 T l ¥ I ¥ l L '1 2.0
0 90 180 270 360

theta, degrees

Figure 27 Cross Section for TM Scattering for Problem C.2. The light curve in the Cartesian
plot is the estimated error in the resuit.

28 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

RCS, dB
error

Figure 28 Cross Section for TE Scattering for Problem C.2. The light curve in the Cartesian
plot is the estimated error in the result.

FASTSCAT, HUGHES RESEARCH LABORATORIES

o
330 .7 T —— ~... 30
“ - = POl ------.._‘\~\\ \\
/‘ & R, & AR
00, o R 4 A
; g ~. . N A
'I / ¢ . P e A A, N K
/ ;I\~ EN Y \
! / YRY vy
I ,/ ; N SRR i oY
REVERN Y %4N 1N
H H H 3 K H :
270 Pttt bk - : i 90
i H { H 1 1 ' K i i 3 :
A LA O A
1 4 1 \ S ; ; { F
‘\ \\ Y \ - _,,_ ° 7 / :’
\ o
‘\\ ‘\\ \ \ =10 / ; /o
\\ A‘\) S -’ ¥
o N /P S 120
2 NN A a0/
\ ’ Aol P s
. -\\~“ ﬂﬂﬂﬂﬂﬂﬂ ~ 30dB
210 “\wj 150

RCS, dB

— -8.0

-40 T T T T T
0 90 180 270

theta, degrees

T -12.0
360

error

Figure 29 Cross Section for TM Scattering for Problem C.3. The light curve in the Cartesian

plot is the estimated error in the resuit.

29

30 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

RCS, dB
error

theta, degrees

Figure 30 Cross Section for TE Scattering for Problem C.3. The light curve in the Cartesian
plot is the estimated error in the result.

FASTSCAT, HUGHES RESEARCH LABORATORIES 31

ANALYSIS OF RESULTS

In the tables for each problem we have listed the discretization, rms errors, run
times, and accuracies. The column labeled “segments” is the number of patches on
the scatterer. The “b.f. order” column is the highest order of the basis functions on
each patch. The “rms error” column is the rms error divided by the average cross
section. The error was computed assuming a solution we estimated to have 10 digits
of accuracy to be exact. The “time” column is the CPU time in seconds on a Sun
SPARCstation. The machine colunmn gives the SparcStation model. The IPX and
LX models have about the same speed. The Sparc-10 is 2-3 times faster than the IPX
and LX. The IPC is about half the speed of the IPX and LX.

Table 1 is a summary of the results for scattering from the ellipse in problem E.1.
Note that little additional time is required to get high accuracy results compared to

low accuracy results. The largest errors were at 0 degrees where the cross section is
the smallest.

Table 1 E.1: Run Times, Discretization, and Accuracy

polarization segments b.f. order rmserror time machine

™™ 8 3 Te-2 6.9 IPX
™ 10 4 3e-3 9.7 IPX
™ 10 9 3e-9 26.7 IPX
TE 12 2 2.5e-1 11.0 LX
TE 8 7 3.0e-3 20.0 LX
TE 10 11 3e-9 57.0 LX

The data for problem E.3 was similar to, but slightly better than, the E.1 results.
The largest errors in the TM cross section were near 0 degrees. The largest errors in
the TE cross section were at the nulls near 200 and 270 degrees.

Table 2 is a summary of the results for scattering from the ellipse in problem E 4.

The largest errors were near 0 degrees and 180 degrees. The results for problem E.6
were similar.

Table 2 E.6: Run Times, Discretization, and Accuracy

polarization ~ segments b.f. order rmserror time machine

™™ 30 4 8e-2 34.1 IPX
™ 40 4 le-2 52.5 IPX
™ 38 10 le-8 195 IPX
TE 30 5 1.3e-1 58.9 IPX
TE 40 7 2.8e-3 147 LX
TE 20 18 1.6e-8 388 IPX

Table 3 is a summary of the results for scattering from the ogive in problem O.1.
The errors were approximately the same in each angular region. The need to taper the
segments many times near the tips caused the run times for extremely high accuracy
solutions to be much longer than the lower accuracy ones.

32 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

Table 3 O.1: Run Times, Discretization, and Accuracy

polarization taper b.f. order rmserror time machine
™ 1 0 le-1 4.2 IPX
™ 2 1 3e-3 6.8 IPX
™ 15 5 le-8 136 IPX
TE 1 1 1.2e-1 6.9 IPX
TE 2 2 9e-3 11 IPX
TE 6 16 le-8 245 IPX

Table 4 is a summary of the results for scattering from the single airfoil in problem
A.1. The largest errors were where the cross section was smallest: near 0 degrees in
the TM case and near 0 degrees and 180 degrees in the TE case.

Table 4 A.1: Run Times, Discretization, and Accuracy

polarization segments b.f. order taper rms error time machine

™™ 12 1 2 le-1 9 IPX
T™ 10 3 2 le-2 14 IPX
™ 26 8 14 9e-9 211 IPX
TE 10 4 0 1.0e-1 14 LX
TE 10 6 0 4.6e-3 21 LX
TE 26 10 14 8.6e-9 422 IPX

The discretizations and run times for problem A.3 were simliar to those for A.1l.
The errors in the cross section for the TM case were the largest near the regions of
maximum cross section near 140 and 230 degrees. There was a large error spike in the
TE case at the deep null at 40 degrees.

Table 5 is a summary of the results for scattering from the double airfoil in problem
A.5. The results for problem A.7 are quite similar. The discretizations were almost
the same as in problems A.1 and A.3 on each air foil. For accuracies of 2 digits, the
errors in both these problems were largest near 140 degrees and 220 degrees. In the
higher accuracy results, there were relatively large error spikes where the cross section
was lowest.

Table 5 A.5: Run Times, Discretization, and Accuracy

polarization segments b.f. order taper rms error time machine

T™ 12 2 2 Te-2 23 IPX
™ 10 3. 2 2e-2 25 IPX
T™ 26 8 14 de-8 1553 IPX
TE 10 4 0 1.4e-1 26 IPX
TE 10 6 0 8.6e-3 40 IPX
TE 26 11 15 4.3e-9 2343 10

Table 6 is a summary of the results for scattering from the small cavity in problem
C.1. The errors tended to be the largest in the regions where the cross section was
lowest.

FASTSCAT, HUGHES RESEARCH LABORATORIES 33

Table 6 C.1: Run Times, Discretization. and Accuracy

polarization segments b.f. order taper rms error time machine

T™ 24 1 1 1.4e-1 18 IPX
™™ 24 1 2 1.4e-2 27 IPX
™ 24 12 7 1.1e-8 2056 IPX
TE 24 1 3 5.4e-2 40 LX
TE 24 1 4 3.6e-3 55 LX
TE 24 13 9 5.8e-9 1467 10

Table 7 is a summary of the results for scattering from the small cavity in problem

C.2. The errors tended to be the largest in the regions where the cross section was
lowest.

Table 7 C.2: Run Times, Discretization, and Accuracy

polarization segments b.f. order taper rmserror time machine

™ 26 1 1 8.4e-2 32 IPC
™ 24 1 2 9.9e-3 48 IPC
™ 24 12 7 1.1e-8 4048 IPX
TE 24 1 3 5.3e-2 41 LX
TE 24 1 4 7.3e-3 56 LX
TE 24 13 9 5.5e-9 4372 IPX

Table 8 is a summary of the results for scattering from the large cavity in problem
C.3. The errors tended to be the largest in the same places as the other two cavities.

Table 8 C.3: Run Times, Discretization, and Accuracy

polarization segments b.f. order taper rms error time machine

™ 180 1 1 1.4e-1 178 LX

™ 140 1 2 1.4e-2 187 LX

™ 120 10 7 1.3e-7 1765 10

TE 120 1 3 1.1e-1 260 LX

TE 120 1 5 1.6e-3 401 IPX

TE 120 13 9 4.6e-9 3743 10
CONCLUSIONS

The most striking conclusion from our data is that the use of accurate surface
descriptions, high order basis functions, and careful quadratures permits high precision
radar cross sections at a modest cost. Because it is not that much more difficult to
compute a result with 3 or 4 digits of accuracy than it is to compute results with 1 or 2
digits of accuracy, one can easily check whether the solutions have actually converged.

To get two digits of precision in the cross sections, a good rule of thumb seems to be
to use about 2 patches per wavelength with 3rd or 4th order basis functions on each
patch. Near sharp edges, the patches should be tapered down to about 8 patches per

34 NUMERICAL METHODS FOR THE SOLUTION OF MAXWELL EQUATIONS

wavelength.

There is considerably more structure in the TE cross sections than in the TM cross
sections. In spite of this, the same discretizations seem to be appropriate in each case
for modest accuracies.

The cross section computations tended to have the largest errors in the regions
where the cross sections were lowest. The exceptions to this rule were most frequent
in 1-2 digit accuracy solutions with TM scattering.

REFERENCES

Hamilton L., Rokhlin V., Stalzer M., Turley R.S., Visher J. and Wandzura S. 1993. The
Importance of Accurate Surface Models in RCS Computations. In: JEEE Antennas and
Propagation Society Symposium Digest, pp. 1136-1139.

Hamilton L., Stalzer M., Turley R.S., Visher J. and Wandzura S. 1993a. Method of Moments
Scattering Computations Using High-Order Basis Functions. In: IEEE Antennas and
Propagation Society Symposium Digest, pp. 1132-1135.

Ma J., Rokhlin V. and Wandzura W. 1993. Generalized Gaussian Quadrature Rules for
Systems of Arbitrary Functions. Yale University Research Report YALEU/DCS/RR-990.

Rao S.M., Wilton D.R. and Glisson A.W. 1982. Electromagnetic Scattering by Surfaces of
Arbitrary Shape. IEEE Transactions on Antennas and Propagation, AP-30(3): 409-418.

Wandzura S.M. 1991. Optimality of Galerkin Method of Scattering Computations. Microwave
and Optical Technology Letters, 4(5):199-200.

e 4 P [

RETRERE

Appendix C

Continuous Basis Functions

This is a Mathematica notebook that defines and illustrates how high-order poly-
nomial basis functions with continuity properties appropriate for discretization
of some 2d and 3d integral equations may be constructed. It is bound separately
and included with selected copies of this report.

54

Apperidix D
Scalable Quadratures

This is a Mathematica notebook that defines and tablulates the quadrature rules
used in FastScat. All the rules (other than Gauss-Legendre and the low-order
triangle rules) have be derived under this contract. It is bound separately and
included with selected copies of this report.

55

Bibliography

[ABB+92]

[AS72]

[Bro75]

[Che90]

[Che92]

[CRW93a)

[CRW93b]

[CRW93c]

[CRW94]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A.McKenney, S. Ostouchov,
and D. Sorensen. LAPACK User’s Guide. Society for Industrial
and Applied Mathematics, Philadelphia, 1992.

Milton Abramowitz and Irene A. Stegun. Handbook of Mathemai-
tcal Functions. Applied Mathematics Series. National Bureau of
Standards, Cambridge, 1972.

Frederick P. Brooks, Jr. The Mythical Man-Month. Addison-
Wesley, Reading, Massachusetts, 1975.

Weng C. Chew. A derivation of the vector addition theorem. AMi-
crowave and Optical Technology Letters, 3(7):256-260, 1990.

Weng C. Chew. Recurrence relations for three-dimensional scalar
addition theorem. Journal of Electromagnetic Waves and Applica-
tions, 6(2):133-142, 1992.

Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. The
fast multipole method: A pedestrian prescription. IEEE Aniennas
and Propagation Society Magazine, 35(3):7-12, June 1993.

Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. The
fast multipole method for electromagnetic scattering calculations.
In JEEE Antennas and Propagation Society Symposium Digest, vol-
ume 1, pages 48-51, Ann Arbor, MI, June 1993. IEEE.

Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. The
fast multipole method for pedestrians. In Progress In Electromay-
netics Research Symposium, Pasadena, CA, July 1993. Jet Propul-
sion Laboratory.

Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. Faster
single-stage multipole method for the wave equation. In 10th An-

56

[DCDH90]

[DCHHS8S]

[DY94]

[DY95]

[ED95)

[ES90]

[Fey49]

[HMS*94a]

[HMS+94b]

nuel Review of Progress in Applied Compuiational Electromagnet-
ics, volume 1, pages 19-24, Monterey, CA, March 1994. Applled
Computamonal Electromagnetics Society.

J. J. Dongarra, J. Du Croz, 1. S. Duff, and S. Hammarling. A set
of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math.
Soft., 16:1-17, 1990.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Al-
gorithm 656: An extended set of FORTRAN Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 14:1-17, 1988.

B. Dembart and Elizabeth Yip. A 3D moment method code based
on fast multipole. In URSI Radio Science Meeting, page 23, Seattle,
WA, June 1994. URSI.

Benjamin Dembart and Elizabeth Yip. A 3D fast multipole method
for electromagnetics with multiple levels. In 11th Annual Review
of Progress in Applied Computational Eleciromagnetics, volume 1,
pages 621-628, Monterey, CA, March 1995. Applied Computational
Electromagnetics Society.

Michael A. Epton and Benjamin Dembart. Multipole translation
theory for the three-dimensional laplace and helmholtz equations.
SIAM Journal of Scientific Computing, 16(4):865-897, July 1995.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley, Reading, Massachusetts, 1990.

Richard P. Feynman. Space-time approach to quantum electrody-
namics. Physical Review, 76:769-789, 1949.

Lisa R. Hamilton, Perry A. Macdonald, Mark A. Stalzer, R. Steven
Turley, John L. Visher, and Stephen M. Wandzura. Electromag-
netic scatering computations using high-order basis functions in
the method of moments. In JEEE Antennas and Propagation So-
ciely International Symposium Digest, volume 3, pages 2166-2169,
Seattle, WA, June 1994. IEEE.

Lisa R. Hamilton, Perry A. Macdonald, Mark A. Stalzer, R. Steven
Turley, John L. Visher, and Stephen M. Wandzura. 3D method of
moments scattering computations using the fast multipole method.
In IEEE Aniennas and Propagation Society International Sympo-
sium Digest, volume 1, pages 435-438, Seattle, WA, June 1994.
IEEE.

57

Tt
SRR PR s R
IRRRT { ‘g A

—

A

[HOS™*95a]

[HOS*95b)

[HOS*95¢]

[HRS*93]

[HST+93a]

[HST+93b]

[HST+93c]

[HST+94)

Lisa R. Hamilton, John J. Ottusch, Mark A. Stalzer, R. Steven
Turley, John L. Visher, and Stephen M. Wandzura. Fastscat bench-
mark data. In Proc. 1994 HAVE FORUM Symposium, volume I,
pages 255-268, Wright Patterson AFB, OH 454-7523, February
1995. Wright Laboratory. WL-TR-95-6003.

Lisa R. Hamilton, John J. Ottusch, Mark A. Stalzer, R. Steven
Turley, John L. Visher, and Stephen M. Wandzura. Accuracy esti-
mation and high order methods. In 17th Annual Review of Progress
in Applied Computational Electromagnetics, volume II, pages 1177-
1184, Monterey, CA, March 1995. Applied Computational Electro-
magnetics Society.

Lisa R. Hamilton, John J. Ottusch, Mark A. Stalzer, R. Steven
Turley, John L. Visher, and Stephen M. Wandzura. Fast multi-
pole methods for scattering computation. Annual contract report,
Hughes Aircraft Company Research Laboratories, February 1995.
AFOSR Contract No. F49620-91-C-0064.

Lisa Hamilton, Vladimir Rokhlin, Mark Stalzer, R. Steven Turley,
John Visher, and Stephen Wandzura. The importance of accu-
rate surface models in RCS computations. In IEEE Antennas and
Propagation Society Symposium Digest, volume 3, pages 1136-1139,
Ann Arbor, MI, June 1993. IEEE.

Lisa Hamilton, Mark Stalzer, R. Steven Turley, John Visher, and
Stephen Wandzura. FastScat: an object-oriented program for
fast scattering computation. Scientific Programming, 2(4):171-178,
1993.

Lisa Hamilton, Mark Stalzer, R. Steven Turley, John Visher, and
Stephen Wandzura. Method of moments scattering computations
using high-order basis functions. In IEEE Antennas and Propaga-
tion Society Symposium Digest, volume 3, pages 1132-1135, Ann
Arbor, MI, June 1993. IEEE.

Lisa R. Hamilton, Mark A. Stalzer, R. Steven Turley, John L.
Visher, and Stephen M. Wandzura. Fast multipole methods for
scattering computation. Annual contract report, Hughes Aircraft
Company Research Laboratories, August 1993. AFOSR Contract
No. F49620-91-C-0064.

Lisa Hamilton, Mark A. Stalzer, R. Steven Turley, John L. Visher,
and Stephen Wandzura. Surface modeling in C++. In Proceedings
of the Second Annual Object-Oriented Numerics Conference, pages
90-59, Corvallis, OR, 1994. Rogue Wave Software.

58

[JWS88)

[KGV83)]
[Kir84]

[KTW93]

[LC95]

[LSL87]

[Mey88]

[MRW93]

[0t£94]

[PMMG92]

[PV49]

W. A. Johnson, Donald R. Wilton, and R. M. Sharpe. Patch code
users’ manual. Sandia Report SAND87-2991, Sandia National Lab-
oratories, Albuquerque, New Mexico, May 1988.

Scott Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220:671, 1983.

Scott Kirkpatrick. Optimization by simulated annealing: Quanti-
tative studies. Journal of Statistical Physics, 34:975, 1984.

Winifred Kummer, R. Steven Turley, and Stephen Wandzura. Ap-
plication of the fast Fourier transform to infinite periodic struc-
tures. In JIEEE Antennaes and Propagation Sociely Symposium Di-
gest, volume 3, pages 1246-1249, Ann Arbor, MI, June 1993. IEEE.

Cai-Cheng Lu and Weng Cho Chew. Fast far field approximation
for calculating the rcs of large objects. In IEEE Antennas and Prop-
agation Society International Symposium Digest, volume 1, pages
22-25, Newport Beach, CA, June 1995. IEEE.

S. Lee, D.A. Shnidman, and F.A. Lichauco. Numerical model-
ing of RCS and antenna problems. Technical Report ESD-TR-87-
935, Massachusetts Institute of Technology Lincoln Laboratories,
1987. National Security Agency Electronic System Division Con-
tract ¥19628-85-C-0002. ‘

Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall, New York, 1988.

Jin-Hong Ma, Vladimir Rokhlin, and Stephen Wandzura. Gener-
alized gaussian quadrature rules for systems of arbitrary functions.
Technical Report YALEU/DCS/RR-990, Yale University, Depart-
ment of Computer Science, October 1993. To be published in STAM
Journal of Numerical Analysis.

John J. Ottusch. Performance comparison of FastScat(TM) and
RAM2D. In Electromagnetic Code Consortium, Albuquerque, NM,
May 1994.

J. M. Putnam, L. N. Medgyesi-Mitschang, and M. B. Gedera.
Carlos-3d(tm) three-dimensional method of moments code, theory
and user manual. Technical report, McDonnell Douglas Corpora-
tion, St. Louis, MO, Dec 1992.

Wolfgang Pauli and F. Villars. On the invariant regularization in
relativistic quantum theory. Reviews of Modern Physics, 21:434-
444, 1949.

59

- - u _ - : :

[Rok90]

[Rok93]

[RW94]

[SC95]

[Sta95)

[Str94]

[Wan92]

[Wan95a)

[Wan95b)

[WC93]

[WC94)

Vladimir Rokhlin. Rapid solution of integral equations of scatter-
ing theory in two dimensions. Journal of Computational Physics,
86(2):414-439, 1990.

Vladimir Rokhlin. Diagonal form of translation operators for the
Helmholtz equation in three dimensions. Applied and Computa-
tional Harmonic Analysis, 1(1):82-93, December 1993.

Vladimir Rokhlin and Stephen Wandzura. The fast multipole
method for periodic structures. In JEEE Antennas and Propagation
Society International Symposium Digest, volume 1, pages 424-426,
Seattle, WA, June 1994. IEEE.

Jiming M. Song and Weng Cho Chew. Fast multipole method
solution of three dimensional integral equation. In IEEE Anten-
nas and Propagation Society International Symposium Digest, vol-
ume 3, pages 1528-1531, Newport Beach, CA, June 1995. IEEE.

Mark A. Stalzer. A parallel fast multipole method for the Helmholtz
equation. To be published in Parallel Processing Letters, 1995.

John Strain. Locally-corrected multidimensional quadrature rules
for singular functions. Technical report, Lawrence Berkeley Labo-
ratory, 1994. To be published in SIAM Journal of Scientific Com-
puting. :

Stephen M. Wandzura. Electric current basis functions for curved
surfaces. Electromagnetics, 12:77-91, 1992.

Stephen Wandzura. High-order discretization of integral equations
with singular kernels. In IEEE Antennas and Propagation Society
Iniernational Symposium Digest, volume 1, pages 792-795, New-
port Beach, CA, June 1995. IEEE.

Stephen M. Wandzura. Accuracy in computation of matrix ele-
ments of singular kernels. In 11th Annual Review of Progress in
Applied Computational Electromagnetics, volume II, pages 1170~
1176, Monterey, CA, March 1995. Applied Computational Electro-
magnetics Society.

Y. M. Wang and Weng Cho Chew. An efficient way to compute
the vector addition theorem. In IEEE Antennas and Propagation
Society Symposium Digest, volume 1, pages 174-177, Ann Arbor,
MI, June 1993. IEEE.

Robert L. Wagner and Weng C. Chew. A ray-propagation fast
multipole algorithm. Microwave and Optical Technology Letiers,
7(10):435-438, July 1994.

60

[WSWS92] Helen T. G. Wang, Michael L. Sanders, Alex Woo, and Michael
Schuh. Radar cross section measurement data EMCC benchmark
targets (RAM coated and dielectric targets). Technical Memoran-
dum NAWCWPNS TM 7318, Naval Air Warfare Center Weapons
Division, China Lake, August 1992. Limited Distribution Docu-
ment.

61

